The Chimera GPNPU by Quadric redefines AI computing on devices by combining processor flexibility with NPU efficiency. Tailored for on-device AI, it tackles significant machine learning inference challenges faced by SoC developers. This licensable processor scales massively offering performance from 1 to 864 TOPs. One of its standout features is the ability to execute matrix, vector, and scalar code in a single pipeline, essentially merging the functionalities of NPUs, DSPs, and CPUs into a single core.
Developers can easily incorporate new ML networks such as vision transformers and large language models without the typical overhead of partitioning tasks across multiple processors. The Chimera GPNPU is entirely code-driven, empowering developers to optimize their models throughout a device's lifecycle. Its architecture allows for future-proof flexibility, handling newer AI workloads as they emerge without necessitating hardware changes.
In terms of memory efficiency, the Chimera architecture is notable for its compiler-driven DMA management and support for multiple levels of data storage. Its rich instruction set optimizes both 8-bit integer operations and complex DSP tasks, providing full support for C++ coded projects. Furthermore, the Chimera GPNPU integrates AXI Interfaces for efficient memory handling and configurable L2 memory to minimize off-chip access, crucial for maintaining low power dissipation.