All IPs > Platform Level IP > Processor Core Independent
In the ever-evolving landscape of semiconductor technologies, processor core independent IPs play a crucial role in designing flexible and scalable digital systems. These semiconductor technologies offer the versatility of enabling functionalities independent of a specific processor core, making them invaluable for a variety of applications where flexibility and reusability are paramount.
Processor core independent semiconductor IPs are tailored to function across different processor architectures, avoiding the constraints tied to any one specific core. This characteristic is particularly beneficial in embedded systems, where designers aim to balance cost, performance, and power efficiency while ensuring seamless integration. These IPs provide solutions that accommodate diverse processing requirements, from small-scale embedded controllers to large-scale data centers, making them essential components in the toolkit of semiconductor design engineers.
Products in this category often include memory controllers, I/O interfaces, and various digital signal processing blocks, each designed to operate autonomously from the central processor's architecture. This independence allows manufacturers to leverage these IPs in a broad array of devices, from consumer electronics to automotive systems, without the need for extensive redesigns for different processor families. Moreover, this flexibility championed by processor core independent IPs significantly accelerates the time-to-market for many devices, offering a competitive edge in high-paced industry environments.
Furthermore, the adoption of processor core independent IPs supports the development of customized, application-specific integrated circuits (ASICs) and system-on-chips (SoCs) that require unique configurations, without the overhead of processor-specific dependencies. By embracing these advanced semiconductor IPs, businesses can ensure that their devices are future-proof, scalable, and capable of integrating new functionalities as technologies advance without being hindered by processor-specific limitations. This adaptability positions processor core independent IPs as a vital cog in the machine of modern semiconductor design and innovation.
Akida's Neural Processor IP represents a leap in AI architecture design, tailored to provide exceptional energy efficiency and processing speed for an array of edge computing tasks. At its core, the processor mimics the synaptic activity of the human brain, efficiently executing tasks that demand high-speed computation and minimal power usage. This processor is equipped with configurable neural nodes capable of supporting innovative AI frameworks such as convolutional and fully-connected neural network processes. Each node accommodates a range of MAC operations, enhancing scalability from basic to complex deployment requirements. This scalability enables the development of lightweight AI solutions suited for consumer electronics as well as robust systems for industrial use. Onboard features like event-based processing and low-latency data communication significantly decrease the strain on host processors, enabling faster and more autonomous system responses. Akida's versatile functionality and ability to learn on the fly make it a cornerstone for next-generation technology solutions that aim to blend cognitive computing with practical, real-world applications.
The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.
The second-generation Akida platform builds upon the foundation of its predecessor with enhanced computational capabilities and increased flexibility for a broader range of AI and machine learning applications. This version supports 8-bit weights and activations in addition to the flexible 4- and 1-bit operations, making it a versatile solution for high-performance AI tasks. Akida 2 introduces support for programmable activation functions and skip connections, further enhancing the efficiency of neural network operations. These capabilities are particularly advantageous for implementing sophisticated machine learning models that require complex, interconnected processing layers. The platform also features support for Spatio-Temporal and Temporal Event-Based Neural Networks, advancing its application in real-time, on-device AI scenarios. Built as a silicon-proven, fully digital neuromorphic solution, Akida 2 is designed to integrate seamlessly with various microcontrollers and application processors. Its highly configurable architecture offers post-silicon flexibility, making it an ideal choice for developers looking to tailor AI processing to specific application needs. Whether for low-latency video processing, real-time sensor data analysis, or interactive voice recognition, Akida 2 provides a robust platform for next-generation AI developments.
Axelera AI's Metis AIPU PCIe AI Accelerator Card is engineered to deliver top-tier inference performance in AI tasks aimed at heavy computational loads. This PCIe card is designed with the industry’s highest standards, offering exceptional processing power packaged onto a versatile PCIe form factor, ideal for integration into various computing systems including workstations and servers.<br><br>Equipped with a quad-core Metis AI Processing Unit (AIPU), the card delivers unmatched capabilities for handling complex AI models and extensive data streams. It efficiently processes multiple camera inputs and supports independent parallel neural network operations, making it indispensable for dynamic fields such as industrial automation, surveillance, and high-performance computing.<br><br>The card's performance is significantly enhanced by the Voyager SDK, which facilitates a seamless AI model deployment experience, allowing developers to focus on model logic and innovation. It offers extensive compatibility with mainstream AI frameworks, ensuring flexibility and ease of integration across diverse use cases. With a power-efficient design, this PCIe AI Accelerator Card bridges the gap between traditional GPU solutions and today's advanced AI demands.
The Akida IP is a groundbreaking neural processor designed to emulate the cognitive functions of the human brain within a compact and energy-efficient architecture. This processor is specifically built for edge computing applications, providing real-time AI processing for vision, audio, and sensor fusion tasks. The scalable neural fabric, ranging from 1 to 128 nodes, features on-chip learning capabilities, allowing devices to adapt and learn from new data with minimal external inputs, enhancing privacy and security by keeping data processing localized. Akida's unique design supports 4-, 2-, and 1-bit weight and activation operations, maximizing computational efficiency while minimizing power consumption. This flexibility in configuration, combined with a fully digital neuromorphic implementation, ensures a cost-effective and predictable design process. Akida is also equipped with event-based acceleration, drastically reducing the demands on the host CPU by facilitating efficient data handling and processing directly within the sensor network. Additionally, Akida's on-chip learning supports incremental learning techniques like one-shot and few-shot learning, making it ideal for applications that require quick adaptation to new data. These features collectively support a broad spectrum of intelligent computing tasks, including object detection and signal processing, all performed at the edge, thus eliminating the need for constant cloud connectivity.
Universal Chiplet Interconnect Express, or UCIe, is a forward-looking interconnect technology that enables high-speed data exchanges between various chiplets. Developed to support a modular approach in chip design, UCIe enhances flexibility and scalability, allowing manufacturers to tailor systems to specific needs by integrating multiple functions into a single package. The architecture of UCIe facilitates seamless data communication, crucial in achieving high-performance levels in integrated circuits. It is designed to support multiple configurations and implementations, ensuring compatibility across different designs and maximizing interoperability. UCIe is pivotal in advancing the chiplet strategy, which is becoming increasingly important as devices require more complex and diverse functionalities. By enabling efficient and quick interchip communication, UCIe supports innovation in the semiconductor field, paving the way for the development of highly efficient and sophisticated systems.
The Yitian 710 Processor is a groundbreaking component in processor technology, designed with cutting-edge architecture to enhance computational efficiency. This processor is tailored for cloud-native environments, offering robust support for high-demand computing tasks. It is engineered to deliver significant improvements in performance, making it an ideal choice for data centers aiming to optimize their processing power and energy efficiency. With its advanced features, the Yitian 710 stands at the forefront of processor innovation, ensuring seamless integration with diverse technology platforms and enhancing the overall computing experience across industries.
MetaTF is BrainChip's premier development tool platform designed to complement its neuromorphic technology solutions. This platform is a comprehensive toolkit that empowers developers to convert and optimize standard machine learning models into formats compatible with BrainChip's Akida technology. One of its key advantages is its ability to adjust models into sparse formats, enhancing processing speed and reducing power consumption. The MetaTF framework provides an intuitive interface for integrating BrainChip’s specialized AI capabilities into existing workflows. It supports streamlined adaptation of models to ensure they are optimized for the unique characteristics of neuromorphic processing. Developers can utilize MetaTF to rapidly iterate and refine AI models, making the deployment process smoother and more efficient. By providing direct access to pre-trained models and tuning mechanisms, MetaTF allows developers to capitalize on the benefits of event-based neural processing with minimal configuration effort. This platform is crucial for advancing the application of machine learning across diverse fields such as IoT devices, healthcare technology, and smart infrastructure.
Quadric's Chimera GPNPU is an adaptable processor core designed to respond efficiently to the demand for AI-driven computations across multiple application domains. Offering up to 864 TOPS, this licensable core seamlessly integrates into system-on-chip designs needing robust inference performance. By maintaining compatibility with all forms of AI models, including cutting-edge large language models and vision transformers, it ensures long-term viability and adaptability to emerging AI methodologies. Unlike conventional architectures, the Chimera GPNPU excels by permitting complete workload management within a singular execution environment, which is vital in avoiding the cumbersome and resource-intensive partitioning of tasks seen in heterogeneous processor setups. By facilitating a unified execution of matrix, vector, and control code, the Chimera platform elevates software development ease, and substantially improves code maintainability and debugging processes. In addition to high adaptability, the Chimera GPNPU capitalizes on Quadric's proprietary Compiler infrastructure, which allows developers to transition rapidly from model conception to execution. It transforms AI workflows by optimizing memory utilization and minimizing power expenditure through smart data storage strategies. As AI models grow increasingly complex, the Chimera GPNPU stands out for its foresight and capability to unify AI and DSP tasks under one adaptable and programmable platform.
The Veyron V2 CPU represents Ventana's second-generation RISC-V high-performance processor, designed for cloud, data center, edge, and automotive applications. This processor offers outstanding compute capabilities with its server-class architecture, optimized for handling complex, virtualized, and cloud-native workloads efficiently. The Veyron V2 is available as both IP for custom SoCs and as a complete silicon platform, ensuring flexibility for integration into various technological infrastructures. Emphasizing a modern architectural design, it includes full compliance with RISC-V RVA23 specifications, showcasing features like high Instruction Per Clock (IPC) and power-efficient architectures. Comprising of multiple core clusters, this CPU is capable of delivering superior AI and machine learning performance, significantly boosting throughput and energy efficiency. The Veyron V2's advanced fabric interconnects and extensive cache architecture provide the necessary infrastructure for high-performance applications, ensuring broad market adoption and versatile deployment options.
xcore.ai by XMOS is a groundbreaking solution designed to bring intelligent functionality to the forefront of semiconductor applications. It enables powerful real-time execution of AI, DSP, and control functionalities, all on a single, programmable chip. The flexibility of its architecture allows developers to integrate various computational tasks efficiently, making it a fitting choice for projects ranging from smart audio devices to automated industrial systems. With xcore.ai, XMOS provides the technology foundation necessary for swift deployment and scalable application across different sectors, delivering high performance in demanding environments.
The Metis AIPU M.2 Accelerator Module from Axelera AI provides an exceptional balance of performance and size, perfectly suited for edge AI applications. Designed for high-performance tasks, this module is powered by a single Metis AI Processing Unit (AIPU), which offers cutting-edge inference capabilities. With this M.2 card module, developers can easily integrate AI processing power into compact devices.<br><br>This module accommodates demanding AI workloads, enabling applications to perform complex computations with efficiency. Thanks to its low power consumption and versatile integration capabilities, it opens new possibilities for use in edge devices that require robust AI processing power. The Metis AIPU M.2 module supports a wide range of AI models and pipelines, facilitated by Axelera's Voyager SDK software platform which ensures seamless deployment and optimization of AI models.<br><br>The module's versatile design allows for streamlined concurrent multi-model processing, significantly boosting the device's AI capabilities without the need for external data centers. Additionally, it supports advanced quantization techniques, providing users with increased prediction accuracy for high-stakes applications.
The aiWare Neural Processing Unit (NPU) is an advanced hardware solution engineered for the automotive sector, highly regarded for its efficiency in neural network acceleration tailored for automated driving technologies. This NPU is designed to handle a broad scope of AI applications, including complex neural network models like CNNs and RNNs, offering scalability across diverse performance tiers from L2 to more demanding L4 systems. With its industry-leading efficiency, the aiWare hardware IP achieves up to 98% effectiveness over various automotive neural networks. It supports vast sensor configurations typical in automotive contexts, maintaining reliable performance under rigorous conditions validated by ISO 26262 ASIL B certification. aiWare is not only power-efficient but designed with a scalable architecture, providing up to 1024 TOPS, ensuring that it meets the demands of high-performance processing requirements. Furthermore, aiWare is meticulously crafted to facilitate integration into safety-critical environments, deploying high determinism in its operations. It minimizes external memory dependencies through an innovative dataflow approach, maximizing on-chip memory utilization and minimizing system power. Featuring extensive documentation for integration and customization, aiWare stands out as a crucial component for OEMs and Tier1s looking to optimize advanced driver-assist functionalities.
The Talamo Software Development Kit (SDK) is a comprehensive toolset designed to streamline the development and deployment of neuromorphic AI applications. Leveraging a PyTorch-integrated environment, Talamo simplifies the creation of powerful AI models for deployment on the Spiking Neural Processor. It provides developers with a user-friendly workflow, reducing the complexity usually associated with spiking neural networks. This SDK facilitates the construction of end-to-end application pipelines through a familiar PyTorch framework. By grounding development in this standard workflow, Talamo removes the need for deep expertise in spiking neural networks, offering pre-built models that are ready to use. The SDK also includes capabilities for compiling and mapping trained models onto the processor's hardware, ensuring efficient integration and utilization of computing resources. Moreover, Talamo supports an architecture simulator which allows developers to emulate hardware performance during the design phase. This feature enables rapid prototyping and iterative design, which is crucial for optimizing applications for performance and power efficiency. Thus, Talamo not only empowers developers to build sophisticated AI solutions but also ensures these solutions are practical for deployment across various devices and platforms.
The SAKURA-II AI Accelerator by EdgeCortix is an advanced processor designed for energy-efficient, real-time AI inferencing. It supports complex generative AI models such as Llama 2 and Stable Diffusion with an impressive power envelope of just 8 watts, making it ideal for applications requiring swift, on-the-fly Batch=1 AI processing. While maintaining critical performance metrics, it can simultaneously run multiple deep neural network models, facilitated by its unique DNA core. The SAKURA-II stands out with its high utilization of AI compute resources, robust memory bandwidth, and sizable DRAM capacity options of up to 32GB, all in a compact form factor. With market-leading energy efficiency, the SAKURA-II supports diverse edge AI applications, from vision and language to audio, thanks to hardware-accelerated arbitrary activation functions and advanced power management features. Designed for ARM and other platforms, the SAKURA-II can be easily integrated into existing systems for deploying AI models and leveraging low power for demanding workloads. EdgeCortix's AI Accelerator excels with innovative features like sparse computing to optimize DRAM bandwidth and real-time data streaming for Batch=1 operations, ensuring fast and efficient AI computations. It offers unmatched adaptability in power management, enabling ultra-high efficiency modes for processing complex AI tasks while maintaining high precision and low latency operations.
The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.
The Ultra-Low-Power 64-Bit RISC-V Core offered by Micro Magic is engineered to cater to high-performance applications while maintaining a low power profile. Operating at just 10mW at 1GHz, this core highlights Micro Magic's commitment to energy-efficient design without compromising on speed. Leveraging design techniques that allow operation at lower voltages, the core achieves remarkable performance metrics, making it suitable for advanced computing needs. The core operates at 5GHz under optimal conditions, showcasing its ability to handle demanding processing tasks. This makes it particularly valuable for applications where both speed and power efficiency are critical, such as portable and embedded systems. Micro Magic's implementation supports seamless integration into various computing infrastructures, accommodating diverse requirements of modern technology solutions. Moreover, the architectural design harnesses the strengths of RISC-V's open and flexible standards, ensuring that users benefit from both adaptability and performance. As part of Micro Magic's standout offerings, this core is poised to make significant impacts in high-demand environments, providing a blend of economy, speed, and reliability.
The AX45MP is engineered as a high-performance processor that supports multicore architecture and advanced data processing capabilities, particularly suitable for applications requiring extensive computational efficiency. Powered by the AndesCore processor line, it capitalizes on a multicore symmetric multiprocessing framework, integrating up to eight cores with robust L2 cache management. The AX45MP incorporates advanced features such as vector processing capabilities and support for MemBoost technology to maximize data throughput. It caters to high-demand applications including machine learning, digital signal processing, and complex algorithmic computations, ensuring data coherence and efficient power usage.
TTTech's Time-Triggered Ethernet (TTEthernet) is a breakthrough communication technology that combines the reliability of traditional Ethernet with the precision of time-triggered protocols. Designed to meet stringent safety requirements, this IP is fundamental in environments where fail-safe operations are absolute, such as human spaceflight, nuclear facilities, and other high-risk settings. TTEthernet integrates seamlessly with existing Ethernet infrastructure while providing deterministic control over data transmission times, allowing for real-time application support. Its primary advantage lies in supporting triple-redundant networks, which ensures dual fault-tolerance, an essential feature exemplified in its use by NASA's Orion spacecraft. The integrity and precision offered by Time-Triggered Ethernet make it ideal for implementing ECSS Engineering standards in space applications. It not only permits robust redundancy and high bandwidth (exceeding 10 Gbps) but also supports interoperability with various commercial off-the-shelf components, making it a versatile solution for complex network architectures.
The KL520 marks Kneron's foray into the edge AI landscape, offering an impressive combination of size, power efficiency, and performance. Armed with dual ARM Cortex M4 processors, this chip can operate independently or as a co-processor to enable AI functionalities such as smart locks and security monitoring. The KL520 is adept at 3D sensor integration, making it an excellent choice for applications in smart home ecosystems. Its compact design allows devices powered by it to operate on minimal power, such as running on AA batteries for extended periods, showcasing its exceptional power management capabilities.
The RISC-V Core-hub Generators from InCore are tailored for developers who need advanced control over their core architectures. This innovative tool enables users to configure core-hubs precisely at the instruction set and microarchitecture levels, allowing for optimized design and functionality. The platform supports diverse industry applications by facilitating the seamless creation of scalable and customizable RISC-V cores. With the RISC-V Core-hub Generators, InCore empowers users to craft their own processor solutions from the ground up. This flexibility is pivotal for businesses looking to capitalize on the burgeoning RISC-V ecosystem, providing a pathway to innovation with reduced risk and cost. Incorporating feedback from leading industry partners, these generators are designed to lower verification costs while accelerating time-to-market for new designs. Users benefit from InCore's robust support infrastructure and a commitment to simplifying complex chip design processes. This product is particularly beneficial for organizations aiming to integrate RISC-V technology efficiently into their existing systems, ensuring compatibility and enhancing functionality through intelligent automation and state-of-the-art tools.
AndesCore Processors offer a robust lineup of high-performance CPUs tailored for diverse market segments. Employing the AndeStar V5 instruction set architecture, these cores uniformly support the RISC-V technology. The processor family is classified into different series, including the Compact, 25-Series, 27-Series, 40-Series, and 60-Series, each featuring unique architectural advances. For instance, the Compact Series specializes in delivering compact, power-efficient processing, while the 60-Series is optimized for high-performance out-of-order execution. Additionally, AndesCore processors extend customization through Andes Custom Extension, which allows users to define specific instructions to accelerate application-specific tasks, offering a significant edge in design flexibility and processing efficiency.
The NMP-750 is AiM Future's powerful edge computing accelerator designed specifically for high-performance tasks. With up to 16 TOPS of computational throughput, this accelerator is perfect for automotive, AMRs, UAVs, as well as AR/VR applications. Fitted with up to 16 MB of local memory and featuring RISC-V or Arm Cortex-R/A 32-bit CPUs, it supports diverse data processing requirements crucial for modern technological solutions. The versatility of the NMP-750 is displayed in its ability to manage complex processes such as multi-camera stream processing and spectral efficiency management. It is also an apt choice for applications that require energy management and building automation, demonstrating exceptional potential in smart city and industrial setups. With its robust architecture, the NMP-750 ensures seamless integration into systems that need to handle large data volumes and support high-speed data transmission. This makes it ideal for applications in telecommunications and security where infrastructure resilience is paramount.
The Azurite Core-hub by InCore Semiconductors is a sophisticated solution designed to offer scalable RISC-V SoCs with high-speed secure interconnect capabilities. This processor is tailored for performance-demanding applications, ensuring that systems maintain robust security while executing tasks at high speeds. Azurite leverages advanced interconnect technologies to enhance the communication between components within a SoC, making it ideal for industries that require rapid data transfer and high processing capabilities. The core is engineered to be scalable, supporting a wide range of applications from edge AI to functional safety systems, adapting seamlessly to various industry needs. Engineered with a focus on security, the Azurite Core-hub incorporates features that protect data integrity and system operation in a dynamic technological landscape. This makes it a reliable choice for companies seeking to integrate advanced RISC-V architectures into their security-focused applications, offering not just innovation but also peace of mind with its secure design.
RAIV represents Siliconarts' General Purpose-GPU (GPGPU) offering, engineered to accelerate data processing across diverse industries. This versatile GPU IP is essential in sectors engaged in high-performance computing tasks, such as autonomous driving, IoT, and sophisticated data centers. With RAIV, Siliconarts taps into the potential of the fourth industrial revolution, enabling rapid computation and seamless data management. The RAIV architecture is poised to deliver unmatched efficiency in high-demand scenarios, supporting massive parallel processing and intricate calculations. It provides an adaptable framework that caters to the needs of modern computing, ensuring balanced workloads and optimized performance. Whether used for VR/AR applications or supporting the back-end infrastructure of data-intensive operations, RAIV is designed to meet and exceed industry expectations. RAIV’s flexible design can be tailored to enhance a broad spectrum of applications, promising accelerated innovation in sectors dependent on AI and machine learning. This GPGPU IP not only underscores Siliconarts' commitment to technological advancement but also highlights its capability to craft solutions that drive forward computational boundaries.
RapidGPT is a next-generation electronic design automation tool powered by AI. Designed for those in the hardware engineering field, it allows for a seamless transition from ideas to physical hardware without the usual complexities of traditional design tools. The interface is highly intuitive, engaging users with natural language interaction to enhance productivity and reduce the time required for design iterations.\n\nEnhancing the entire design process, RapidGPT begins with concept development and guides users through to the final stages of bitstream or GDSII generation. This tool effectively acts as a co-pilot for engineers, allowing them to easily incorporate third-party IPs, making it adaptable for various project requirements. This adaptability is paramount for industries where speed and precision are of the essence.\n\nPrimisAI has integrated novel features such as AutoReview™, which provides automated HDL audits; AutoComment™, which generates AI-driven comments for HDL files; and AutoDoc™, which helps create comprehensive project documentation effortlessly. These features collectively make RapidGPT not only a design tool but also a comprehensive project management suite.\n\nThe effectiveness of RapidGPT is made evident in its robust support for various design complexities, providing a scalable solution that meets specific user demands from individual developers to large engineering teams seeking enterprise-grade capabilities.
The Maverick-2 Intelligent Compute Accelerator revolutionizes computing with its Intelligent Compute Architecture (ICA), delivering unparalleled performance and efficiency for HPC and AI applications. This innovative product leverages real-time adaptability, enabling it to optimize hardware configurations dynamically to match the specific demands of various software workloads. Its standout feature is the elimination of domain-specific languages, offering a universal solution for scientific and technical computing. Equipped with a robust developer toolchain that supports popular languages like C, C++, FORTRAN, and OpenMP, the Maverick-2 seamlessly integrates into existing workflows. This minimizes the need for code rewrites while maximizing developer productivity. By providing extensive support for emerging technologies such as CUDA and HIP/ROCm, Maverick-2 ensures that it remains a viable and potent solution for current and future computing challenges. Built on TSMC's advanced 5nm process, the accelerator incorporates HBM3E memory and high-bandwidth PCIe Gen 5 interfaces, supporting demanding computations with remarkable efficiency. The Maverick-2 achieves a significant power performance advantage, making it ideal for data centers and research facilities aiming for greater sustainability without sacrificing computational power.
The Neural Processing Unit (NPU) offered by OPENEDGES is engineered to accelerate machine learning tasks and AI computations. Designed for integration into advanced processing platforms, this NPU enhances the ability of devices to perform complex neural network computations quickly and efficiently, significantly advancing AI capabilities. This NPU is built to handle both deep learning and inferencing workloads, utilizing highly efficient data management processes. It optimizes the execution of neural network models with acceleration capabilities that reduce power consumption and latency, making it an excellent choice for real-time AI applications. The architecture is flexible and scalable, allowing it to be tailored for specific application needs or hardware constraints. With support for various AI frameworks and models, the OPENEDGES NPU ensures compatibility and smooth integration with existing AI solutions. This allows companies to leverage cutting-edge AI performance without the need for drastic changes to legacy systems, making it a forward-compatible and cost-effective solution for modern AI applications.
The Codasip RISC-V BK Core Series is renowned for integrating flexibility and performance scalability within a RISC-V framework. These cores are designed to cater to various application demands, from general-purpose computing to specialized tasks requiring high processing capability. The BK series supports customization that optimizes performance, power, and area based on different application scenarios. One notable feature of the BK Core Series is its ability to be tailored using Codasip Studio, which enables architects to modify microarchitectures and instruction sets efficiently. This customization is supported by a robust set of pre-verified options, ensuring quality and reliability across applications. The BK cores also boast energy efficiency, making them suitable for both power-sensitive and performance-oriented applications. Another advantage of the BK Core Series is its compatibility with a broad range of industry-standard tools and interfaces, which simplifies integration into existing systems and accelerates time to market. The series also emphasizes secure and safe design, aligning with industry standards for functional safety and security, thereby allowing integration into safety-critical environments.
The General Purpose Accelerator (Aptos) from Ascenium stands out as a redefining force in the realm of CPU technology. It seeks to overcome the limitations of traditional CPUs by providing a solution that tackles both performance inefficiencies and high energy demands. Leveraging compiler-driven architecture, this accelerator introduces a novel approach by simplifying CPU operations, making it exceptionally suited for handling generic code. Notably, it offers compatibility with the LLVM compiler, ensuring a wide range of applications can be adapted seamlessly without rewrites. The Aptos excels in performance by embracing a highly parallel yet simplified CPU framework that significantly boosts efficiency, reportedly achieving up to four times the performance of cutting-edge CPUs. Such advancements cater not only to performance-oriented tasks but also substantially mitigate energy consumption, providing a dual benefit of cost efficiency and reduced environmental impact. This makes Aptos a valuable asset for data centers seeking to optimize their energy footprint while enhancing computational capabilities. Additionally, the Aptos architecture supports efficient code execution by resolving tasks predominantly at compile-time, allowing the processor to handle workloads more effectively. This allows standard high-level language software to run with improved efficiency across diverse computing environments, aligning with an overarching goal of greener computing. By maximizing operational efficiency and reducing carbon emissions, Aptos propels Ascenium into a leading position in the sustainable and high-performance computing sector.
The Digital Radio (GDR) from GIRD Systems is an advanced software-defined radio (SDR) platform that offers extensive flexibility and adaptability. It is characterized by its multi-channel capabilities and high-speed signal processing resources, allowing it to meet a diverse range of system requirements. Built on a core single board module, this radio can be configured for both embedded and standalone operations, supporting a wide frequency range. The GDR can operate with either one or two independent transceivers, with options for full or half duplex configurations. It supports single channel setups as well as multiple-input multiple-output (MIMO) configurations, providing significant adaptability in communication scenarios. This flexibility makes it an ideal choice for systems that require rapid reconfiguration or scalability. Known for its robust construction, the GDR is designed to address challenging signal processing needs in congested environments, making it suitable for a variety of applications. Whether used in defense, communications, or electronic warfare, the GDR's ability to seamlessly switch configurations ensures it meets the evolving demands of modern communications technology.
ChipJuice is a sophisticated tool designed for reverse engineering of integrated circuits (ICs), which plays a vital role in digital forensics and hardware security assessments. The tool allows users to delve into the internal architecture of digital cores, analyzing and extracting detailed layouts such as netlists and HDL files from electronic images of chips. Aimed at providing comprehensive insights, ChipJuice supports a range of applications from security assessments to technological intelligence and digital IP infringement investigations. Engineered for ease of use, ChipJuice is user-friendly and integrates advanced algorithms enabling high-performance processing on standard developer machines. Its design caters to various IC types—microcontrollers, microprocessors, FPGAs, SoCs—regardless of their architecture, size, or materials (like Aluminum or Copper). ChipJuice's versatility allows users to handle both complex and standard ICs, making it a go-to resource for laboratories, researchers, and governmental entities involved in security evaluations. One standout feature of ChipJuice is the "Automated Standard Cell Research," wherein once a standard cell is identified, its occurrences are automatically cataloged and can be quickly reused for studying other chips. This systematizes the reverse engineering workflow, significantly speeding up the analysis by building upon past examinations. ChipJuice epitomizes Texplained's commitment to simplifying the complexities of hardware exploration, delivering precise and actionable insights into the ICs' security framework.
Ncore Cache Coherent Interconnect is designed to tackle the multifaceted challenges in multicore SoC systems by introducing heterogeneous coherence and efficient cache management. This NoC IP optimizes performance by ensuring high throughput and reliable data transmission across multiple cores, making it indispensable for sophisticated computing tasks. Leveraging advanced cache coherency, Ncore maintains data integrity, crucial for maintaining system stability and efficiency in operations involving heavy computational loads. With its ISO26262 support, it caters to automotive and industrial applications requiring high reliability and safety standards. This interconnect technology pairs well with diverse processor architectures and supports an array of protocols, providing seamless integration into existing systems. It enables a coherent and connected multicore environment, enhancing the performance of high-stakes applications across various industry verticals, from automotive to advanced computing environments.
GSHARK is part of the TAKUMI line of GPU IPs known for its compact size and ability to richly enhance display graphics in embedded systems. Developed for devices like digital cameras, this IP has demonstrated an extensive record of reliability with over a hundred million units shipped. The proprietary architecture offers exceptional performance with low power usage and minimal CPU demand, enabling high-quality graphics rendering typical of PCs and smartphones.
Designed to cater to AI-specific needs, SEMIFIVE’s AI Inference Platform provides tailored solutions that seamlessly integrate advanced technologies to optimize performance and efficiency. This platform is engineered to handle the rigorous demands of AI workloads through a well-integrated approach combining hardware and software innovations matched with AI acceleration features. The platform supports scalable AI models, delivering exceptional processing capabilities for tasks involving neural network inference. With a focus on maximizing throughput and efficiency, it facilitates real-time processing and decision-making, which is crucial for applications such as machine learning and data analytics. SEMIFIVE’s platform simplifies AI implementation by providing an extensive suite of development tools and libraries that accelerate design cycles and enhance comprehensive system performance. The incorporation of state-of-the-art caching mechanisms and optimized data flow ensures the platform’s ability to handle large datasets efficiently.
Syntacore’s SCR9 processor core stands out as a powerful force in handling high-performance computing tasks with its dual-issue out-of-order 12-stage pipeline. This core is engineered for environments that demand peak computational ability and robust pipeline execution, crucial for data-intense tasks such as AI and ML, enterprise applications, and network processing. The architecture is tailored to support extensive multicore and heterogeneous configurations, providing valuable tools for developers aiming to maximize workload efficiency and processing speed. The inclusion of a vector processing unit (VPU) underscores its capability to handle large datasets and complex calculations, while maintaining system integrity and coherence through its comprehensive cache management. With support for hypervisor functionalities and scalable Linux environments, the SCR9 continues to be a key strategic element in expanding the horizons of RISC-V-based applications. Syntacore’s extensive library of development resources further enriches the usability of this core, ensuring that its implementation remains smooth and effective across diverse technological landscapes.
The ISPido on VIP Board solution is designed for the Lattice Semiconductor's VIP (Video Interface Platform) board, offering real-time, high-quality image processing. It supports automatic configuration selection at boot, ensuring a balanced output or alternatively, it provides a menu interface for manual adjustments. Key features include input from two Sony IMX 214 sensors and output in HDMI format with 1920 x 1080p resolution using YCrCb 4:2:2 color space. This system supports run-time calibration via a serial port, allowing users to customize gamma tables, convolution filters, and other settings to match specific application needs. The innovative setup facilitates streamlined image processing for efficient deployment across applications requiring high-definition video processing.
The SCR7 application core is at the forefront of performance and innovation, featuring a 12-stage dual-issue out-of-order pipeline with capabilities that support high-performance, Linux-capable application environments. This core is essential for scenarios demanding seamless cache coherency and support for complex operational tasks. Ideal for high-demand markets such as data centers, artificial intelligence, and mobile technologies, the SCR7 provides a robust and efficient solution that thrives under demanding conditions. It supports 64-bit SMP configurations up to 8 cores, effectively handling multi-threaded operations with superior data throughput capabilities. Syntacore enhances this core’s functionality through its comprehensive ecosystem of tools and support resources, ensuring developers can maximize the capabilities of this formidable hardware. The SCR7 stands as a testament to the scalability and adaptability intrinsic to the RISC-V architecture, reinforced by Syntacore's innovative approach to processor IP design.
The AndeShape Platforms are designed to streamline system development by providing a diverse suite of IP solutions for SoC architecture. These platforms encompass a variety of product categories, including the AE210P for microcontroller applications, AE300 and AE350 AXI fabric packages for scalable SoCs, and AE250 AHB platform IP. These solutions facilitate efficient system integration with Andes processors. Furthermore, AndeShape offers a sophisticated range of development platforms and debugging tools, such as ADP-XC7K160/410, which reinforce the system design and verification processes, providing a comprehensive environment for the innovative realization of IoT and other embedded applications.
The Dynamic Neural Accelerator II (DNA-II) by EdgeCortix is a versatile and powerful neural network IP core tailored for edge AI applications. Featuring run-time reconfigurable interconnects, it achieves high parallelism and efficiency essential for convolutional and transformer networks. DNA-II can be integrated with a variety of host processors, rendering it adaptable for a wide range of edge-based solutions that demand efficient processing capabilities at the core of AI advancements. This architecture allows real-time reconfiguration of data paths between DNA engines, optimizing parallelism while reducing on-chip memory bandwidth via a patented reconfigurable datapath. The architecture significantly enhances utilization rates and ensures fast processing through model parallelism, making it suitable for mission-critical tasks where low power consumption is paramount. DNA-II serves as the technological backbone of the SAKURA-II AI Accelerator, enabling it to execute generative AI models proficiently. This innovative IP core is engineered to mesh effortlessly with the MERA software stack, optimizing neural network operations through effective scheduling and resource distribution, representing a paradigm shift in how neural network tasks are managed and executed in real-time.
The RISCV SoC developed by Dyumnin Semiconductors is engineered with a 64-bit quad-core server-class RISCV CPU, aiming to bridge various application needs with an integrated, holistic system design. Each subsystem of this SoC, from AI/ML capabilities to automotive and multimedia functionalities, is constructed to deliver optimal performance and streamlined operations. Designed as a reference model, this SoC enables quick adaptation and deployment, significantly reducing the time-to-market for clients. The AI Accelerator subsystem enhances AI operations with its collaboration of a custom central processing unit, intertwined with a specialized tensor flow unit. In the multimedia domain, the SoC boasts integration capabilities for HDMI, Display Port, MIPI, and other advanced graphic and audio technologies, ensuring versatile application across various multimedia requirements. Memory handling is another strength of this SoC, with support for protocols ranging from DDR and MMC to more advanced interfaces like ONFI and SD/SDIO, ensuring seamless connectivity with a wide array of memory modules. Moreover, the communication subsystem encompasses a broad spectrum of connectivity protocols, including PCIe, Ethernet, USB, and SPI, crafting an all-rounded solution for modern communication challenges. The automotive subsystem, offering CAN and CAN-FD protocols, further extends its utility into automotive connectivity.
The iCan PicoPop® is a highly compact System on Module (SOM) based on the Zynq UltraScale+ MPSoC from Xilinx, suited for high-performance embedded applications in aerospace. Known for its advanced signal processing capabilities, it is particularly effective in video processing contexts, offering efficient data handling and throughput. Its compact size and performance make it ideal for integration into sophisticated systems where space and performance are critical.
Network on Chip X, or NOC-X, is an advanced solution that facilitates communication within a chip by integrating multiple processor cores and IP blocks through a high-performance data transmission network. This IP is specifically crafted to optimize on-chip data flow, ensuring that information can be swiftly and efficiently routed to where it's needed, even in the most demanding computational environments. The NOC-X is built to support a variety of configurations, making it an adaptable choice for different semiconductor designs. It enhances system throughput while maintaining low power consumption, crucial for modern electronic devices requiring both high-speed processing and energy efficiency. By leveraging the capabilities of NOC-X, system designers can achieve superior design flexibility, accelerating the development of complex systems with multiple processing demands. This IP thus plays a role in pushing the boundaries of what’s possible in semiconductor innovation, contributing to the efficiency and performance of future technology solutions.
FlexWay Interconnect is precisely engineered for cost-effective and low-power applications, particularly suited for Internet-of-Things (IoT) edge devices and microcontrollers. It ensures efficient data management across small to medium scale SoCs. Providing support for ISO26262, it bolsters safety and reliability in critical applications. This interconnect allows for flexible topology generation, enabling configurations that minimize wire lengths and optimize timing closures. Its inherently scalable design allows for incremental upgrades and enhancements, accommodating up to 50 network interface units for customizable connections across configurations. The technology underpinning FlexWay supports key industry protocols such as AXI and APB, making it adaptable to various design requirements. The inclusion of automatic, script-driven topology generation and mesh network editing capabilities means that design complexity is significantly reduced, easing the path from concept to production.
The Veyron V1 is a high-performance RISC-V CPU designed to meet the rigorous demands of modern data centers and compute-intensive applications. This processor is tailored for cloud environments requiring extensive compute capabilities, offering substantial power efficiency while optimizing processing workloads. It provides comprehensive architectural support for virtualization and efficient task management with its robust feature set. Incorporating advanced RISC-V standards, the Veyron V1 ensures compatibility and scalability across a wide range of industries, from enterprise servers to high-performance embedded systems. Its architecture is engineered to offer seamless integration, providing an excellent foundation for robust, scalable computing designs. Equipped with state-of-the-art processing cores and enhanced vector acceleration, the Veyron V1 delivers unmatched throughput and performance management, making it suitable for use in diverse computing environments.
The ORC3990 is a groundbreaking LEO Satellite Endpoint SoC engineered for use in the Totum DMSS Network, offering exceptional sensor-to-satellite connectivity. This SoC operates within the ISM band and features advanced RF transceiver technology, power amplifiers, ARM CPUs, and embedded memory. It boasts a superior link budget that facilitates indoor signal coverage. Designed with advanced power management capabilities, the ORC3990 supports over a decade of battery life, significantly reducing maintenance requirements. Its industrial temperature range of -40 to +85 degrees Celsius ensures stable performance in various environmental conditions. The compact design of the ORC3990 fits seamlessly into any orientation, further enhancing its ease of use. The SoC's innovative architecture eliminates the need for additional GNSS chips, achieving precise location fixes within 20 meters. This capability, combined with its global LEO satellite coverage, makes the ORC3990 a highly attractive solution for asset tracking and other IoT applications where traditional terrestrial networks fall short.
Ventana's System IP is a critical component for next-generation RISC-V platforms, providing essential support for integrating high-performance CPUs into sophisticated computing architectures. This IP block enables system-level functionality that aligns with the stringent demands of modern computing environments, from cloud infrastructures to advanced automotive systems. Equipped with comprehensive system management capabilities, the System IP includes crucial components such as memory management units and I/O handling protocols that enhance the overall efficiency and reliability of RISC-V-based systems. It is optimized for virtualization and robust security, essential for maintaining integrity in high-traffic data centers. The System IP supports seamless integration with Ventana's Veyron processor families, ensuring scalability and consistent performance under demanding workloads. Its design allows for easy customization, making it an ideal choice for companies looking to innovate and expand within the rapidly evolving field of high-performance computing.
ZIA Image Signal Processing technology provides state-of-the-art solutions for optimizing image quality and enhancing vision-based systems. This technology is integral to applications requiring precise image analysis, such as surveillance cameras and automotive safety systems. It supports various image processing tasks, including de-noising, color correction, and sharpness enhancement, delivering superior visual output even under challenging conditions. ZIA's adaptable architecture supports integration into a range of devices, ensuring broad applicability across multiple sectors.
Trifecta-GPU design offers an exceptional computational power utilizing the NVIDIA RTX A2000 embedded GPU. With a focus on modular test and measurement, and electronic warfare markets, this GPU is capable of delivering 8.3 FP32 TFLOPS compute performance. It is tailored for advanced signal processing and machine learning, making it indispensable for modern, software-defined signal processing applications. This GPU is a part of the COTS PXIe/CPCIe modular family, known for its flexibility and ease of use. The NVIDIA GPU integration means users can expect robust performance for AI inference applications, facilitating quick deployment in various scenarios requiring advanced data processing. Incorporating the latest in graphical performance, the Trifecta-GPU supports a broad range of applications, from high-end computing tasks to graphics-intensive processes. It is particularly beneficial for those needing a reliable and powerful GPU for modular T&M and EW projects.
TUNGA is an advanced System on Chip (SoC) leveraging the strengths of Posit arithmetic for accelerated High-Performance Computing (HPC) and Artificial Intelligence (AI) tasks. The TUNGA SoC integrates multiple CRISP-cores, employing Posit as a core technology for real-number calculations. This multi-core RISC-V SoC is uniquely equipped with a fixed-point accumulator known as QUIRE, which allows for extremely precise computations across vectors as long as 2 billion entries. The TUNGA SoC includes programmable FPGA gates for enhancing field-critical functions. These gates are instrumental in speeding up data center services, offloading tasks from the CPU, and advancing AI training and inference efficiency using non-standard data types. TUNGA's architecture is tailored for applications demanding high precision, including cryptography and variable precision computing tasks, facilitating the transition towards next-generation arithmetic. In the computational ecology, TUNGA stands out by offering customizable features and rapid processing capabilities, making it suitable not only for typical data center functions but also for complex, precision-demanding workloads. By capitalizing on Posit arithmetic, TUNGA aims to deliver more efficient and powerful computational performance, reflecting a strategic advancement in handling complex data-oriented processes.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!