All IPs > Analog & Mixed Signal > RF Modules
In the dynamic world of semiconductor IPs, RF Modules play a crucial role in ensuring seamless wireless communication across a wide range of devices. RF, standing for Radio Frequency, refers to the technology that utilizes electromagnetic spectrum frequencies to transmit data wirelessly, thereby eliminating the need for physical connection and enabling greater flexibility and convenience in electronic systems. Our RF Modules category within the Analog & Mixed Signal primary category consists of a diverse collection of products designed to facilitate this wireless interaction by offering effective solutions for complex radio frequency circuits.
The applications of RF Modules semiconductor IPs are vast and versatile, encompassing a multitude of industries including consumer electronics, telecommunications, automotive, and industrial systems. In consumer electronics, RF modules are crucial for developing devices such as smartphones, smartwatches, and wireless earbuds, where they help in managing and optimizing data transmission over wireless networks. Telecommunications heavily rely on these modules for building robust infrastructure, enabling efficient data handling in mobile networks and satellite communications.
Moreover, in the automotive sector, RF modules contribute to the advancement of vehicle connectivity technologies, supporting features like keyless entry, tire pressure monitoring systems, and vehicle-to-everything (V2X) communication. Similarly, in the industrial domain, these modules are fundamental components in systems that require reliable long-distance wireless communication, such as in smart grid applications and remote monitoring systems.
Within the RF Modules category, you will discover a comprehensive selection of semiconductor IPs tailored to meet various design specifications. These include components that support different frequency bands, offer varying levels of integration, and are designed to comply with a range of communication standards and protocols. Whether you need baseband processors, RF transceivers, or complete system-on-chip solutions, our RF Modules in Analog & Mixed Signal provide ample choices for engineers and designers looking to enhance the performance, reliability, and functionality of wireless-enabled products.
The EW6181 GPS and GNSS Silicon is an advanced semiconductor solution specifically engineered for high-efficiency, low-power applications. This digital GNSS silicon offers a compact design with a footprint of approximately 0.05mm2, particularly when applied in 5nm semiconductor technology. Designed for seamless integration, the EW6181 combines innovative DSP algorithms and multi-node licensing flexibility, enhancing the overall device performance in terms of power conservation and reliability. Featuring a robust architecture, the EW6181 integrates meticulously calibrated components all aimed at reducing the bill of materials (BoM) while ensuring extended battery life for devices such as tracking tags and modules. This strategic component minimization directly translates to more efficient power usage, addressing the needs of power-sensitive applications across various sectors. Capable of supporting high-reliability location tracking, the EW6181 comes supplemented with stable firmware, ensuring dependable performance and future upgrade paths. Its adaptable IP core can be licensed in RTL, gate-level netlist, or GDS forms, adaptable to a wide range of technology nodes, assuming the availability of the RF frontend capabilities.
The LightningBlu solution from Blu Wireless is a premier mmWave technology specifically designed to cater to the rigorous demands of high-speed rail connectivity. It provides multi-gigabit, continuous communication solutions between tracksides and trains. This connectivity ensures reliable on-board services such as internet access, entertainment, and passenger information systems. The versatile solution is engineered to perform seamlessly even at speeds greater than 300 km/h, enhancing the passenger experience by delivering consistent, high-speed internet and data services. Built to leverage the 57-71 GHz mmWave spectrum, LightningBlu guarantees carrier-grade connectivity that accommodates the surge of digital devices passengers bring aboard. The technology facilitates a robust communication network that empowers high-speed rail services amidst challenging dynamics and ensures that passengers enjoy uninterrupted service across wide geographic expanses. This significant technical prowess positions LightningBlu as an indispensable asset for the future of rail transport, effectively shaping the industry's move towards digital transformation. With a focus on sustainability, LightningBlu also supports the transition to a carbon-free transport ecosystem, providing an advanced data communication solution that interlinks seamless connectivity with environmentally responsible operation. Its application in rail systems positions it at the heart of modernizing rail services, fostering an era of enhanced rider satisfaction and operational efficiency.
Optimized for precision and speed, the MVDP2000 series sensors feature a capacitive sensing technology. These pressure sensors are digitally calibrated for temperature and pressure, offering low power consumption and fast readings. Perfect for applications where reliable and precise pressure measurements are critical, these sensors support a variety of industrial uses, including gas flow instruments and filter monitoring.
The THOR platform is a versatile tool for developing application-specific NFC sensor and data logging solutions. It incorporates silicon-proven IP blocks, creating a comprehensive ASIC platform suitable for rigorous monitoring and continuous data logging applications across various industries. THOR is designed for accelerated development timelines, leveraging low power and high-security features. Equipped with multi-protocol NFC capabilities and integrated temperature sensors, the THOR platform supports a wide range of external sensors, enhancing its adaptability to diverse monitoring needs. Its energy-efficient design allows operations via energy harvesting or battery power, ensuring sustainability in its applications. This platform finds particular utility in sectors demanding precise environmental monitoring and data management, such as logistics, pharmaceuticals, and industrial automation. The platform's capacity for AES/DES encrypted data logging ensures secure data handling, making it a reliable choice for sectors with stringent data protection needs.
D2D® Technology, developed by ParkerVision, is a revolutionary approach to RF conversion that transforms how wireless communication operates. This technology eliminates traditional intermediary stages, directly converting RF signals to digital data. The result is a more streamlined and efficient communication process that reduces complexity and power consumption. By bypassing conventional analog-to-digital conversion steps, D2D® achieves higher data accuracy and reliability. Its direct conversion approach not only enhances data processing speeds but also minimizes energy usage, making it an ideal solution for modern wireless devices that demand both performance and efficiency. ParkerVision's D2D® technology continues to influence a broad spectrum of wireless applications. From improving the connectivity in smartphones and wearable devices to optimizing signal processing in telecommunication networks, D2D® is a cornerstone of ParkerVision's technological offerings, illustrating their commitment to advancing communication technology through innovative RF solutions.
The ORC3990 is a groundbreaking LEO Satellite Endpoint SoC engineered for use in the Totum DMSS Network, offering exceptional sensor-to-satellite connectivity. This SoC operates within the ISM band and features advanced RF transceiver technology, power amplifiers, ARM CPUs, and embedded memory. It boasts a superior link budget that facilitates indoor signal coverage. Designed with advanced power management capabilities, the ORC3990 supports over a decade of battery life, significantly reducing maintenance requirements. Its industrial temperature range of -40 to +85 degrees Celsius ensures stable performance in various environmental conditions. The compact design of the ORC3990 fits seamlessly into any orientation, further enhancing its ease of use. The SoC's innovative architecture eliminates the need for additional GNSS chips, achieving precise location fixes within 20 meters. This capability, combined with its global LEO satellite coverage, makes the ORC3990 a highly attractive solution for asset tracking and other IoT applications where traditional terrestrial networks fall short.
The CC-205 Wideband CMOS Rectifier is engineered for direct interfacing with antennas without the necessity of a matching network, accommodating a rectification range from 6MHz to 5.8GHz. It ensures efficient power conversion with a flexible input power range from -18dBm to over +33dBm, offering conversion efficiencies between 40% and 90%. This rectifier optimizes power transfer through very low return losses, enhancing the applicability in a range of RF environments and systems, thus maximizing efficiency.
The SiGe BiCMOS technology is designed to handle demanding RF applications with optimal efficiency. This solution provides low noise figures and exceptional linearity, catering to wireless communication needs. With the inclusion of silicon-germanium, the technology leverages the benefits of reduced power consumption while maintaining high performance. In the RF domain, SiGe BiCMOS stands out due to its effective integration of high-speed bipolar and low-power CMOS transistors on the same chipset, enhancing its appeal for designers. This integration supports a wide range of frequencies, addressing the diverse needs of today's communication systems. Engineers often choose SiGe BiCMOS for applications where both analog and digital processing are required on a single platform. Its versatility and reliability make it ideal for infrastructure markets and portable devices, helping designers achieve their performance targets while streamlining manufacturing processes.
The 802.11ah HaLow Transceiver by Palma Ceia SemiDesign is crafted to meet the rigorous demands of modern IoT applications, which require efficient power usage and extended connection ranges. Conforming to the Wi-Fi HaLow standard, this transceiver is pivotal for developing low-power, long-range wireless networks. The device is equipped to handle various bandwidths and supports a wide frequency range, ensuring connectivity over great distances without compromising on power efficiency. Integrated features enable low-noise operations and real-time signal processing enhancements, which are crucial for maintaining high-quality links in variable environments. This transceiver is especially suited for battery-operated IoT devices, providing flexibility in design with its interfaces and calibration mechanisms. Its versatile nature makes it an asset for applications such as smart meters, security systems, and other automated infrastructure components, facilitating robust and secure communication across various IoT settings.
The Hyperspectral Imaging System by Imec offers enhanced imaging capabilities, chiefly used in space exploration and Earth observation for on-chip spectral imaging. This technology allows for efficient data capture across numerous spectral bands, giving a comprehensive view that is critical for scientific and commercial applications. With its compact and robust design, the system delivers high-resolution imaging while maintaining the portability needed for field applications. This advanced imaging system leverages on-chip technology that combines innovative hardware and software solutions, contributing to its high efficiency and accuracy in capturing detailed spectral information. The hyperspectral imaging achieved allows for assembling vast datasets rapidly, which is valuable in various applications ranging from environmental monitoring to agricultural assessments. Incorporating lead-free quantum dot photodiodes, the system ensures environmentally friendly operation and precise spectral capture. The modular design of the system facilitates easy integration into existing platforms, expanding its usability across different sectors requiring advanced imaging capabilities.
The FCM1401 Dual-Drive™ Power Amplifier is tailored for Ku-band applications, utilizing CMOS technology to deliver solutions between 12.4 to 16 GHz. This product is designed to optimize power output while maintaining a compact silicon footprint. Notable for its excellent efficiency, the FCM1401 addresses the specific demands of telecom and satellite communications applications. The amplifier provides reliable performance characterized by a gain of 22 dB and a Psat of 19.2 dBm, achieving a power-added efficiency of 47% while operating at a supply voltage of 1.8V. Through these specifications, it positions itself as an ideal solution for applications requiring high power output and minimal heat generation. This product benefits from world-class CMOS integration, ensuring compatibility with modern telecom systems, enhancing their range and reducing their energy costs. The FCM1401 is equipped with a QFN/EVB package, allowing for straightforward implementation in various industrial contexts. It sets itself apart by offering an increased frequency range while delivering robust power handling capabilities, facilitating the high RF power needs of contemporary communication systems. The dual-drive capability of the FCM1401 means that it can effectively double the input signal power into the output without losing efficiency, making it highly suited for use in mission-critical operations where reliability and performance are paramount. Its high power-added efficiency also translates to cooler operation, reducing the need for extensive thermal management solutions, thus lowering associated costs.
The ArrayNav Adaptive GNSS Solution ushers in an era of enhanced automotive navigation, leveraging advanced adaptive antenna technology. This solution expertly applies multiple antennas to increase antenna gain and diversity, offering substantial advancements in navigation precision and operational consistency within complex environments. By integrating array-based technology, ArrayNav is tailored to improve the sensitivity and coverage necessary for sophisticated automotive systems. ArrayNav's use of adaptive antennas translates to significant reductions in issues such as multipath fading, which often affects navigation accuracy in urban canyons. With these enhancements, the solution ensures more reliable performance, boosting accuracy even in challenging terrains or when faced with potential signal interference. This solution has been specifically engineered for applications that demand robustness and precision, such as automotive advanced driver-assistance systems (ADAS). By employing the ArrayNav technology, users can benefit from higher degrees of jamming resistance, leading to safer and more accurate navigation results across a broad range of environments.
Sentire Radar by IMST GmbH is a sophisticated radar system designed for precise measurement and monitoring applications. With capabilities that include accurate distance and speed measurement, Sentire Radar systems also provide advanced spatial mapping of radar targets through the use of multiple transmitters and receivers. These systems incorporate the latest radar technologies for a range of applications such as perimeter surveillance, industrial measurement, and autonomous navigation.\n\nOperating in frequency bands like the license-free 24 GHz and 60 GHz ISM bands, and extending to 77/79 GHz for more specialized traffic and telematics applications, Sentire Radar is flexible and reliable. The incorporation of high-frequency circuity and advanced radar signal processing ensures that all captured data is managed and processed efficiently on a digital board within the modules.\n\nThe versatility of Sentire Radar is further enhanced by the integration of artificial intelligence, allowing for the sophisticated classification of radar targets. This feature provides users with comprehensive data interfaces suited for complex detection scenarios, highlighting Sentire Radar's utility in increasingly digital and automated environments.
In smartphone applications, ActLight’s Dynamic PhotoDetector (DPD) offers a step-change in photodetection technology, enhancing features such as proximity sensing and ambient light detection. This high sensitivity sensor, with its ability to detect subtle changes in light, supports functions like automatic screen brightness adjustments and energy-efficient proximity sensing. Designed for low voltage operation, the DPD effectively reduces power consumption, making it suitable for high-performance phones without increasing thermal load. The technology also facilitates innovative applications like 3D imaging and eye-tracking, adding richness to user experiences in gaming and augmented reality.
This technology represents a significant innovation in the field of wireless energy transfer, allowing for the efficient transmission of power without physical connections or radiation. By leveraging magnetic resonance, this non-radiative energy transfer system can power devices over distances with high efficiency. It's designed to be safe and environmentally friendly, avoiding the pitfalls of electromagnetic radiation while maintaining a high level of power transfer efficiency. The technology finds its applications in various sectors, including consumer electronics, automotive, and industrial applications where it provides a seamless and reliable solution to power transfer needs. The system's capability to transfer power efficiently without contact makes it ideal for scenarios where traditional power connections might be impractical or inconvenient, enabling new levels of convenience and flexibility for users. Designed to integrate smoothly with existing infrastructure, this energy transfer system can significantly reduce reliance on traditional charging methods, paving the way for more innovative and sustainable energy solutions. Furthermore, the system's architecture is geared towards scalability and adaptability, making it suitable for a wide range of devices and use cases.
The Yuzhen 600 RFID Chip by T-Head Semiconductor plays a pivotal role in supply chain management and logistics by revolutionizing the way businesses track and manage their inventory. Designed to operate in high-frequency RFID systems, this chip offers superior read range capabilities, making it a preferred choice for extensive applications in retail and asset management operations. Its architecture benefits from T-Head's advanced signal processing capabilities, enabling it to handle complex data exchanges seamlessly. This facilitates smoother interactions between RFID tags and readers, thereby optimizing inventory management and reducing time lags in data retrieval processes. The versatility of the Yuzhen 600 allows it to be implemented across diverse environments, from warehouse storage to retail store checkouts. Furthermore, the Yuzhen 600 supports a range of protocols that ensure compatibility with existing RFID systems worldwide, making it an essential component for scalable global logistics solutions. This chip enhances operational efficiency by providing real-time data access, thus aligning with T-Head's commitment to innovative solutions that bolster digital transformation efforts across different sectors.
Offering a seamless radio communication solution, ShortLink’s Complete RF Transceiver for 433, 868, and 915 MHz comes packed with a robust set of features crafted to enhance wireless connectivity. This transceiver complies with the IEEE 802.15.4 standard, offering reliable data transfer in Sub-GHz bands renowned for their long-range capabilities. With transmit power adjustable from -20 to +8 dBm, the transceiver excels in scenarios demanding energy efficiency and vast reach. Supporting data rates up to 250 kbps, it's ideal for various IoT applications offering dependable indoor and outdoor connectivity. Designed for easy integration, the RF transceiver incorporates built-in voltage regulators, a bandgap reference, and bias generation to simplify system-level implementation. One of its standout capabilities is its ability to adopt custom radio protocols, enabling tailored communication paths that can significantly reduce power consumption and extend battery life. With its support for multiple global frequencies, the design ensures a wide applicability range across different regions, making it the perfect choice for developers looking to harness Sub-GHz for expansive communication reach. The crystal oscillators within provide high stability for clock generation, ensuring precise system operation. This tightly integrated RF solution does away with the need for additional radio chips, allowing for a reduced bill-of-materials (BOM) and a more compact final product footprint. The transceiver is compatible with a variety of process technologies, adding another layer of flexibility for system designers to achieve the perfect balance between performance and energy efficiency.
The MIPITM SVRPlus2500 provides an efficient solution for high-speed 4-lane video reception. It's compliant with CSI2 rev 2.0 and DPHY rev 1.2 standards, designed to facilitate easy timing closure with a low clock rating. This receiver supports PRBS, boasts calibration capabilities, and offers a versatile output of 4/8/16 pixels per clock. It features 16 virtual channels and 1:16 input deserializers per lane, handling data rates up to 10Gbps, making it ideal for complex video processing tasks.
ParkerVision's Energy Sampling Technology is a state-of-the-art solution in RF receiver design. It focuses on achieving high sensitivity and dynamic range by implementing energy sampling techniques. This technology is critical for modern wireless communication systems, allowing devices to maintain optimal signal reception while consuming less power. Its advanced sampling methods enable superior performance in diverse applications, making it a preferred choice for enabling efficient wireless connectivity. The energy sampling technology is rooted in ParkerVision's expertise in matched filter concepts. By applying these concepts, the technology enhances the modulation flexibility of RF systems, thereby expanding its utility across a wide range of wireless devices. This capability not only supports devices in maintaining consistent connectivity but also extends their battery life due to its low energy requirements. Overall, ParkerVision's energy sampling technology is a testament to their innovative approach in RF solutions. It stands as an integral part of their portfolio, addressing the industry's demand for high-performance and energy-efficient wireless technology solutions.
The High-Voltage ICs by Advanced Silicon are key components for driving various thin film technologies. Designed with a high pin count for multi-channel output, these drivers are adept at turning on and off thin film switching devices across technologies such as amorphous silicon, poly-silicon, and IGZO. They also provide precise analog driving of MEMs devices and ITO capacitive loads, essential for applications requiring high precision and resilience, like digital flat-panel X-ray detectors. With resolutions from 64 to 1024 output voltage levels, these ICs maintain performance across demanding environments and applications.
Specializing in mmW frequency domains, Akronic designs complete integrated wireless transceivers for both communication and radar systems. Their renowned expertise is evident in the development of mmW products that operate over a wide range of frequencies, ensuring high-performance solutions for demanding markets. Akronic's approach synergizes CMOS or BiCMOS high-frequency operations with optimal system architectures and circuit topologies. Their designs incorporate customized inductors, transformers, and transmission lines, complemented by precise EM simulations and thoughtful chip-to-PCB transitions. This integrated approach ensures that Akronic's mmW-IC transceivers meet stringent specifications for a broad set of applications from telecom links to radar sensors.
The RF-SOI and RF-CMOS platform is distinguished by its ability to optimize wireless communication components for high frequencies and low power consumption applications. Building on Silicon on Insulator (SOI) technology, this platform allows for improved isolation and reduced parasitic capacitance, enhancing RF performance. This combination of SOI and CMOS technology provides the versatility needed to address stringent requirements in RF signal processing, making it a prime choice for designing cutting-edge wireless devices. The technology's capabilities support advancements in 5G networks and IoT devices, where precision and efficiency are critical. Designed for scalability, the RF-SOI and RF-CMOS platform empowers engineers to leverage component miniaturization while maintaining excellent performance, catering to the demands of complex infrastructure requirements in the telecommunications industry.
The MIPITM SVTPlus-8L-F is a cutting-edge serial video transmitter designed for FPGAs. This transmitter adheres to CSI2 rev 2.0 and DPHY rev 1.2, featuring 8 lanes and capable of handling data rates of up to 12Gbps. It's engineered for high-performance video applications, boasting robust processing capabilities. Its support for advanced transmission protocols ensures seamless integration and compatibility with a wide range of video systems.
The DVB-C Modulator is specifically designed to perform modulations for head-end video and broadband data transmission systems, such as Cable Modem Termination Systems (CMTS). This modulator core is optimized for use in various cable modem test equipment and supports both point-to-point (PTP) and point-to-multipoint microwave radio links. It boasts compliance with the J83 standard modulation schemes, enhancing its flexibility and usability across different platforms.
ActLight's Dynamic PhotoDetector (DPD) enhances the capabilities of smart rings with state-of-the-art photodetection technology. Designed for compact form factors, this sensor excels in environments where space is limited, such as inside a ring. Its operation at low voltages significantly extends battery life, crucial for the discreet and continual monitoring required by smart rings. The DPD's high sensitivity ensures accurate biometric readings, crucial for tracking vital signs like heart rate and activity levels without relying on additional amplification. This technology supports users in their wellness journeys by delivering reliable health data in a sleek, user-friendly device.
The NB-IoT (LTE Cat NB1) Transceiver from Palma Ceia SemiDesign supports cellular-based IoT communications, compliant with 3GPP Release 13. Engineered for reliability, this transceiver is built to facilitate low-power wide-area network (LPWAN) applications, ideal for a plethora of IoT devices. Supporting a comprehensive frequency range, the transceiver is equipped with advanced features to improve signal reception and transmission even under challenging conditions. This includes internal calibration features for correcting signal offsets and mitigating IQ mismatch, which enhances overall connectivity reliability and throughput. This transceiver fulfills key IoT requirements such as long battery life and dependable network integration in both urban and rural settings. It is adaptable to various environmental conditions, making it suitable for applications in fields such as metering, asset tracking, and environmental monitoring where robust, wide-ranging connectivity is critical.
Mobix Labs' EMI Flex Filters are designed to address electromagnetic interference challenges in advanced technologies, ensuring smooth data transmission without disruptions. These filters are characterized by their ultra-thin and flexible form factor, which allows them to fit complex surfaces and enclosures, maintaining signal clarity and high-speed data transmission even in demanding environments. With the capability to filter up to 50 GHz, these filters are ideal for 5G and radar applications, ensuring long-term reliability across various industries. The EMI Flex Filters offer exceptional attenuation, catering to stringent military and aerospace standards. They provide customizable form factors to suit specific device requirements, ensuring versatility and adaptability in integration. Their durable design makes them suitable for applications that involve harsh conditions, enhancing their broad use-case potential in military, aerospace, telecommunication, IoT, medical, and automotive sectors. These filters emphasize performance by achieving minimal signal loss, which is critical for high-speed data applications. Military-grade performance and custom engineering support enable tailored solutions to meet precise specifications, reinforcing Mobix Labs' leadership in advanced EMI filtering technology.
ActLight's Dynamic PhotoDetector (DPD) for wearables is specifically engineered to revolutionize light sensing in compact devices. This innovative sensor operates on low voltage, significantly extending the battery life of wearable devices such as fitness trackers and smartwatches. The DPD's high sensitivity allows it to detect even minimal light changes without the need for bulky amplifiers, enabling a sleek design and energy-efficient operation. This sensor supports advanced health monitoring features, providing precise heart rate and activity measurements, thereby empowering users with real-time wellness insights. Its compact size makes it ideal for integration into space-constrained wearable devices without compromising performance.
eSi-Analog offers silicon-proven analog technology, essential for integrating critical analog functionality in custom ASIC and SoC devices. This low-power IP is optimized to operate efficiently across leading foundry processes, providing the necessary adaptability for a range of applications from communication systems to healthcare devices.
The Dynamic PhotoDetector (DPD) tailored for hearables by ActLight offers an unparalleled advancement in light sensing technology for compact audio devices. Designed for energy efficiency, the DPD operates at low voltages which not only conserves battery life but also maintains peak performance, crucial for modern, on-the-go audio wearables. With its high sensitivity, the sensor excels in detecting minute changes in light conditions, thus ensuring consistent and reliable biometric data acquisition. This makes it particularly advantageous for heart rate and activity monitoring in hearables, enhancing the overall user experience with precise health tracking capabilities.
The 100BASE-T1 Ethernet PHY is a sophisticated communication technology designed for seamless data transmission over 100 Mbps speeds using unshielded twisted pair (UTP) cables. This PHY technology facilitates efficient and high-speed connectivity with low-power consumption, making it ideal for modern network applications where robustness is crucial. Utilizing advanced Ethernet technology, it offers a cost-effective solution with a minimal wiring footprint, thus optimizing installation efficiency. Its capability to maintain high-performance communication across extensive distances without the need for repeaters or amplifiers emphasizes its reliability and strength in various networking environments. The 100BASE-T1 Ethernet PHY ensures easy integration with existing network infrastructures, making it a preferred choice for industries looking to upgrade their communication systems to meet growing data demands. By providing high-speed data transfer in a compact form factor, it supports the pursuit of creating more connected and responsive networking solutions.
With an emphasis on performance, the MIPITM SVTPlus2500 is a robust 4-lane video transmitter adhering to CSI2 rev 2.0 and DPHY rev 1.2 standards. It facilitates timing closure with its low clock rating and supports PRBS for precise data management. The transmitter can handle 8/16 pixel inputs per clock and offers programmable timing parameters. Equipped with 16 virtual channels, this IP is engineered for high-speed video transmission.
The DVB-Satellite Modulator is a high-performance modulator core designed to adhere to DVB-S, DSNG, DVB-S2, and DVB-S2X satellite forward-link specifications. This versatile modulator core is engineered for both broadcasting and interactive applications, accommodating a variety of modulation schemes including (A)PSK. Its robust framework is capable of delivering efficient and reliable operations in challenging satellite communication environments. The modulator's design prioritizes support for advanced satellite communication standards, ensuring its place in future-ready satellite systems.
Designed for advanced 5G mmWave implementations, the FCM3801-BD Dual-Drive™ Power Amplifier cover frequency ranges of 32 to 44 GHz. Utilizing sophisticated CMOS technology, this amplifier is positioned for excellence with a gain of 19 dB and Psat of 18.3 dBm, attaining a power-added efficiency of 45% at a supply voltage of 1.8V. Its development caters to high-performance applications within the realm of 5G infrastructure. The FCM3801-BD stands out with its bare die format, offering versatility in design incorporation and enabling engineers to customize their system layouts to optimize performance. It's tailored for contexts that demand significant RF power and minimal total thermal output, minimizing cooling requirements. This power amplifier leverages the dual-drive architecture to multiply the input signal with maximum efficiency, appealing to high-demand telecom operations. The combination of high efficiency and elevated power levels make the FCM3801-BD integral for forward-looking communication technologies, providing solutions that meet the intense data demands of modern networks.
Engineered for medical imaging, the MVUM1000 ultrasound sensor array incorporates 256 elements, utilizing CMUT technology to ensure high integration with electronic interfaces. This design supports low power usage with high sensitivity, accommodating multiple imaging modes. Its compact form factor and advanced functionality make it ideal for point-of-care and portable ultrasound applications.
The Universal QAM/PSK Modulator is an adaptable core designed for broadband point-to-point and point-to-multipoint applications. It delivers versatile modulation capabilities that are compatible with IEEE 802.16.x Wireless MAN-SC and 802.15.3 Wireless PAN standards. By supporting varied applications, this modulator ensures reliable and efficient wireless communication across diverse platforms. Its robust framework enables seamless modulation processes suited for both small-scale and extensive network operations, optimizing wireless signal transmission.
This innovative system is designed to enhance the user experience of wireless power transfer applications by ensuring precise alignment and compatibility between power transmitters and receivers. It includes mechanisms for detecting the positioning of a device relative to a charging source, optimizing the alignment process to ensure efficient energy transfer. The system's compatibility detection capabilities allow it to recognize and adapt to various device specifications and charging standards, reducing the risk of charging errors and improving overall system reliability. With this system, users can achieve optimal alignment automatically, making the process of wireless charging simpler and more intuitive. The technology is particularly beneficial in scenarios where positioning is critical for energy transfer efficiency, such as in automotive or portable device applications. It addresses common challenges in wireless power systems, such as alignment drift and signal path obstructions, ensuring that power is delivered smoothly and consistently.
The L1 Band GNSS Transceiver Core from RF Integration is crafted to enhance your GPS-based systems with improved precision in location and timing. This core is designed to support not only the existing GPS signals but also signals from newer systems such as GLONASS, Galileo, and Beidou. The core’s architecture allows for versatile implementation in both commercial and military applications, providing robust performance in L1, L2, and L5 bands. Utilizing a combination of advanced RF design techniques, the transceiver core ensures optimal power efficiency while maintaining high sensitivity and signal integrity. The integration of both analog and digital components within the core facilitates seamless data processing and communication, making it a vital component in modern navigation systems. Additionally, the transceiver is engineered to operate reliably in challenging environments, providing accurate positioning data even in urban canyons or indoors. Overall, the L1 Band GNSS Transceiver Core is at the forefront of satellite navigation technology, offering a compact and efficient solution for cutting-edge applications. By incorporating this core into your systems, you can ensure improved accuracy and reliability, thereby enhancing the overall user experience and operational efficacy of your devices.
The second-generation MIPITM SVRPlus-8L-F is a high performance serial video receiver built for FPGAs. Complying with CSI2 revision 2.0 and DPHY revision 1.2 standards, it supports 8 lanes and 16 virtual channels, offering efficient communication with 12Gbps data throughput. This receiver comes with features like 4 pixel output per clock, calibration support, and communication error statistics, making it suitable for high-speed video transmission and processing applications.
Bruco Integrated Circuits offers a cutting-edge WiFi6, LTE, and 5G Front-End Module that provides unmatched wireless connectivity for modern communication needs. This module is designed to support the latest wireless communication standards, ensuring seamless connectivity for high-speed data transfer and communication applications. With enhanced signal amplification and filtering, this module excels in delivering clear, strong signals across various platforms, from personal devices to expansive network infrastructures. The module integrates multi-band capabilities, allowing it to operate effectively in different frequency bands, which is crucial for supporting technologies like WiFi6, LTE, and 5G. This versatility enables high-speed internet access, improved network capacity, and reduced latency, critically demanded by today’s data-intensive applications. Additionally, it is engineered for low power operation, maximizing efficiency without compromising performance. Notably, the front-end module is equipped with advanced features to mitigate signal interference and enhance signal-to-noise ratios, essential for maintaining excellent connectivity stability. Its design also ensures compatibility with existing communication networks, providing an easy upgrade path for infrastructure seeking to adopt newer, faster communication standards.
The DVB-S2 Modulator is engineered to accommodate both DVB-S2 and DVB-S2X satellite forward-link specifications. This high-performance modulator core supports (A)PSK modulation schemes and is particularly suitable for both broadcasting and interactive applications. Its design is focused on delivering advanced functionalities while ensuring compliance with dynamic satellite communication standards. This makes it well-suited for a variety of professional and commercial telecommunications applications. The modulator is ideal for delivering superior broadcast experiences with increased efficiency and reliability.
The MIPITM V-NLM-01 is a specialized non-local mean image noise reduction product designed to enhance image quality through sophisticated noise reduction techniques. This hardware core features a parameterized search-window size and adjustable bits per pixel, ensuring a high degree of customization and efficiency. Supporting HDMI with resolutions up to 2048×1080 at 30 to 60 fps, it is ideally suited for applications requiring image enhancement and processing.
Akronic offers cutting-edge RF and mm-Wave IC design services, showcasing their expertise across various high-frequency subsystems of wireless radio transceivers. Their proficiency encompasses frequencies from a few MHZ to 100 GHz, embodying their capability in device modeling and chip layout at these wavelengths. By optimizing active biasing for peak performance against noise and power metrics, Akronic leverages sophisticated circuit topologies to guarantee low power consumption and minimal silicon footprint. Their design implements state-of-the-art techniques for simulation and packaging, ensuring that outcomes precisely match theoretical projections. Akronic's RF and mm-Wave IC designs support diverse applications, reinforcing their standing as leaders in the field.
The 2.4GHz ISM Band RF product from Actt is engineered to deliver outstanding wireless RF performance, particularly suited for applications in Bluetooth and Wi-Fi technology development. It integrates a high level of performance with a low power design, ensuring optimal energy efficiency. This RF solution is compatible with IEEE 802.1X protocol, supporting a broad range of wireless applications. Designed with RFIC expertise at advanced technology nodes, it provides a small IP footprint, making it a versatile option for various IoT applications including wearables and smart devices.
The ISDB-T Modulator delivers robust capabilities for both professional TV networks and custom point-to-point radio links. This modulator core is fully compliant with ARIB STD-B31 and ABNT NBR 15601, ensuring compatibility across a broad range of broadcasting applications. Its adaptable framework makes it suitable for diverse broadcast needs, facilitating the efficient transmission of digital television signals. Through this, broadcasters can achieve a more reliable and consistent service quality across different market segments.
The PLL for Satellite Receiver from Bruco Integrated Circuits is a specialized phase-locked loop designed to meet the stringent requirements of satellite communication systems. This PLL excels in maintaining synchronization over long distances, crucial for satellite communications where signal integrity is paramount. It provides precise frequency and phase alignment, essential for demodulating received signals accurately. Built on cutting-edge mixed-signal technology, this PLL offers superior noise performance and frequency stability, making it ideal for use in environments with varying signal conditions. Its design facilitates seamless integration into satellite receivers, enabling them to capture and process signals with high reliability. The robustness of this PLL ensures continued operation in challenging conditions, such as those encountered in space. Additionally, the PLL's low power consumption and compact design make it suitable for the constrained power budgets and space limitations typical of satellite systems. Its ability to quickly lock onto frequencies, even amidst potential interference, ensures satellite receivers remain agile and responsive to signal changes, enhancing overall system performance.
PhantomBlu by Blu Wireless represents a cutting-edge advancement in tactical defense communications. This mmWave technology solution is expertly constructed to deliver stealthy, gigabit-level connectivity on the move, supporting high-speed tactical operations. PhantomBlu's low SWAP (Size, Weight, and Power) tactical solutions, configurable as PCP (hub) or STA (client), align with dynamic defense needs by providing dependable communications at range. The system capitalizes on spectrum availability and equipment flexibility, offering interoperability for both legacy systems and future assets without dependence on traditional networks. This capability makes PhantomBlu an invaluable tool for military forces requiring swift, secure, and adaptable communications to maintain operational efficacy in complex environments. The PhantomBlu system plays a pivotal role in transforming how modern military operations are conducted by seamlessly integrating with existing communications bases and enhancing mission-based applications. The flexibility of the configurable options supports high-performance execution, ensuring that military communication networks are responsive and robust in the face of evolving tactical demands.
Incorporating advanced interference management techniques, this wireless energy transfer solution enhances the efficiency and reliability of power transmission over the air. By dynamically adjusting to environmental factors that typically cause interference, this technology ensures a stable power transfer even in challenging conditions. Employing sophisticated algorithms, the system manages power distribution to minimize interference, optimizing the performance and enabling it to power multiple devices simultaneously without conflicts. This advancement is particularly relevant in urban and industrial settings where electromagnetic interference is common, significantly improving energy transfer capabilities in such environments. The system’s ability to maintain high power transfer efficiency amidst potential sources of disruption expands its applicability in both consumer and industrial domains. It integrates seamlessly with existing wireless power infrastructure, offering a robust solution that can adapt to a multitude of environments and requirements. This technology provides distinct advantages for applications requiring high reliability and uninterrupted power delivery, positioning it as a vital component in the evolution of wireless power systems.
The 802.11 Transceiver Core designed by RF Integration provides comprehensive connectivity solutions for wireless networking. This core is optimized for the IEEE 802.11 a/b/g/n standards, ensuring high-speed data transmission and robust local area network coverage. It supports MIMO architectures and OFDM signals, allowing data throughput up to 600Mbps, which is essential for modern wireless infrastructure and consumer electronics. The transceiver core integrates seamlessly with existing digital processing systems, providing a reliable wireless connection essential for various applications, from smart home devices to enterprise network setups. Its sophisticated design minimizes power consumption and cost, making it a practical choice for developers looking to implement efficient wireless solutions. Incorporating both RF and mixed-signal elements, the 802.11 Transceiver Core is designed to deliver high performance even in environments prone to interference. This makes it ideal for use in areas requiring high bandwidth and stable performance over large coverage areas. RF Integration's focus on quality and innovation ensures this core remains a leader in the wireless technology market, driving forward connectivity capabilities in a range of devices.
The MIPITM CSI2MUX-A1F is an innovative video multiplexor designed to manage and aggregate multiple video streams effortlessly. It supports CSI2 rev 1.3 and DPHY rev 1.2 standards, handling inputs from up to four CSI2 cameras and producing a single aggregated video output. With data rates of 4 x 1.5Gbps, it is optimal for applications requiring efficient video stream management and consolidation.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!