Find IP Sell IP AI Assistant Chip Talk Chip Videos About Us
Log In

All IPs > Wireline Communication > Error Correction/Detection

Wireline Communication Error Correction/Detection Semiconductor IP

In the realm of wireline communication, ensuring the integrity and reliability of data transmission is a critical concern. This is where Error Correction and Detection semiconductor IPs play a pivotal role. These IPs are designed to identify and rectify errors that occur during data transmission, thus enhancing the overall performance and reliability of wireline communication systems. Whether it involves correcting single-bit errors or detecting complex data discrepancies, these IPs are essential for maintaining the fidelity of data transmission.

Error Correction and Detection IPs utilize various sophisticated algorithms and techniques such as Reed-Solomon, Hamming Code, and Cyclic Redundancy Check (CRC). These technologies work by adding redundancy to the data being transmitted, allowing the receiver to detect errors and, in many cases, automatically correct them. This process not only protects data integrity but also ensures higher quality of service, reducing the need for retransmissions and improving network efficiency.

These semiconductor IP blocks are implemented in a wide array of applications including broadband networks, data centers, and telecommunication systems where uninterrupted and accurate data transmission is paramount. For engineers and developers, leveraging these IPs can significantly accelerate the development process of wireline systems by providing ready-to-integrate solutions that uphold communication standards.

In this category, you will find a vast selection of Error Correction and Detection semiconductor IPs suited for various applications. These IPs are available from leading suppliers, offering solutions that support multiple protocols and data rates. With these IPs, developers can ensure their wireline communication products are robust, reliable, and capable of delivering the highest levels of performance needed in today's data-driven world.

All semiconductor IP

ntLDPC_WiFi6 IEEE 802.11 n/ac/ax compliant LDPC Codec

The Low Density Parity Check (LDPC) codes are powerful, capacity approaching channel codes and have exceptional error correction capabilities. The high degree of parallelism that they offer enables efficient, high throughput hardware architectures. The ntLDPC_WiFi6 IP Core is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes and is fully compliant with IEEE 802.11 n/ac/ax standard. The Quasi-Cyclic LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPC_WiFi6 decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Normalized Offset Min-Sum Algorithm or Layered Lambda-min Algorithm. Selecting between the two algorithms presents a decoding performance .vs. system resources utilization trade-off. The core is highly reconfigurable and fully compliant to the IEEE 802.11 n/ac/ax Wi-Fi4, Wi-Fi5 and Wi-Fi 6 standards. The ntLDPC_WiFi6 encoder IP implements a 81-bit parallel systematic LDPC encoder. An off-line profiling Matlab script processes the original matrices and produces a set of constants that are associated with the matrix and hardcoded in the RTL encoder.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.11, Error Correction/Detection
View Details

Ceva PentaG2 - 5G Baseband Platform IP for Mobile Broadband and IoT, scalable 5G modem platform

**Ceva-PentaG2** is a complete IP platform for implementing a wide range of user-equipment and IoT cellular modems. The platform includes a variety of DSPs, modem hardware modules, software libraries, and simulation tools. Capabilities of the Ceva-PentaG2 include New Radio (NR) physical layer design ranging across all 3GPP profiles from RedCap IoT and mMTC, through eMBB up to ultra-reliable low-latency communications (URLLC). The platform has two base configurations. Ceva-PentaG2 Max emphasizes performance and scalability for enhanced mobile broadband (eMBB) and future proofing design for next generation 5G-Advanced releases. Ceva-PentaG2 Lite emphasizes extreme energy and area efficiency for lower-throughput applications such as LTE Cat 1, RedCap, and optimized cellular IoT applications. The PentaG2 platform comprises a set of Ceva DSP cores, optimized fixed-function hardware accelerators, and proven, optimized software modules. By using this platform, designers can implement optimized, hardware-accelerated processing chains for all main modem functions. In the selection process, designers can tune their design for any point across a huge space of area, power consumption, latency, throughput, and channel counts. Solutions can fit applications ranging from powerful eMBB for mobile and Fixed Wireless Access (FWA) devices to connected vehicles, cellular IoT modules, and even smart watches. System-C models in Ceva’s Virtual Platform Simulator (VPS) aid architectural exploration and system tuning, while an FPGA-based emulation kit speeds SoC integration. [**Learn more about Ceva-PentaG2 solution>**](https://www.ceva-ip.com/product/ceva-pentag2/?utm_source=silicon_hub&utm_medium=ip_listing&utm_campaign=ceva_pentag2_page)

Ceva, Inc.
3GPP-5G, Error Correction/Detection, Interleaver/Deinterleaver, Modulation/Demodulation
View Details

Time-Triggered Ethernet

Time-Triggered Ethernet (TTEthernet) is a pioneering development by TTTech that offers deterministic Ethernet capabilities for safety-critical applications. This technology supports real-time communication between network nodes while maintaining the standard Ethernet infrastructure. TTEthernet enables reliable data delivery, with built-in mechanisms for fault tolerance that are vital for spaces like aviation, industrial automation, and space missions. One of the key aspects of TTEthernet is its ability to provide triple-redundant communication, ensuring network reliability even in the case of multiple failures. Licensed for significant projects such as NASA's Orion spacecraft, TTEthernet demonstrates its efficacy in environments that require dual fault-tolerance. As part of the ECSS engineering standard, the protocol supports human spaceflight standards and integrates seamlessly into space-based and terrestrial networks. The application of TTEthernet spans across multiple domains due to its robust nature and compliance with industry standards. It is particularly esteemed in markets that emphasize the importance of precise time synchronization and high availability. By using TTEthernet, companies can secure communications in networks without compromising on the speed and flexibility inherent to Ethernet-based systems.

TTTech Computertechnik AG
Cell / Packet, Error Correction/Detection, Ethernet, FlexRay, IEEE1588, LIN, MIL-STD-1553, MIPI, Processor Core Independent, Safe Ethernet
View Details

ntLDPC_SDAOCT SDA OCT Standard 3.1.0 (5G-NR) compliant LDPC Codec

ntLDPC_SDAOCT IP implements a 5G-NR Base Graph 1 systematic Encoder/Decoder based on Quasi-Cyclic LDPC Codes (QC-LDPC), with lifting size Zc=384 and Information Block Size 8448 bits. The implementation is based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that it offers high throughput at low implementation complexity. The ntLDPCE_SDAOCT Encoder IP implements a systematic LDPC Zc=384 encoder. Input and Output may be selected to be 32-bit or 128-bits per clock cycle prior to synthesis, while internal operations are 384-bits parallel per clock cycle. Depending on code rate, the respective amount of parity bits are generated and the first 2xZc=768 payload bits are discarded. There are 5 code rate modes of operation available (8448,8448)-bypass, (9984,8448)-0.8462, (11136,8448)-0.7586, (12672,8448)-0.6667 and (16896,8448)-0.5. The ntLDPCD_SDAOCT Base Graph Decoder IP may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Min-Sum Algorithm (MS) or Layered Lambda-min Algorithm (LMIN). Variations of Layered MS available are Offset Min-Sum (OMS), Normalized Min-Sum (NMS), and Normalized Offset Min-Sum (NOMS). Selecting between these algorithms presents a decoding performance vs. system resources utilization trade-off. The ntLDPCD_SDAOCT decoder IP implements a Zc=384 parallel systematic LDPC layered decoder. Each layer corresponds to Zc=384 expanded rows of the original LDPC matrix. Each layer element corresponds to the active ZcxZc shifted identity submatrices within the layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder IP also features a powerful optional early termination (ET) criterion, to maintain practically equivalent error correction performance, while significantly increasing its throughput rate and/or reducing hardware cost. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI4 stream IF.

Noesis Technologies P.C.
All Foundries
All Process Nodes
3GPP-5G, Error Correction/Detection, Optical/Telecom
View Details

ntLDPC_G98042 ITU-T G.9804.2 compliant LDPC Codec

The ntLDPC_G98042 (17664,14592) IP Core is defined in IEEE 802.3ca-2020, it is used by ITU-T G.9804.2-09.2021 standard document and it is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPCΕ_G98042 encoder IP implements a 256-bit parallel systematic LDPC encoder. The Generator LDPC Matrix is calculated off-line, compressed and stored in ROM. It is partitioned to 12 layers and each layer, when multiplied by the 14592 payload block, produces 256 parity bits. The multiplier architecture may be parameterized before synthesis to generate multiple multiplier instances [1:4,6], in order to effectively process multiple layers in parallel and improve the IP throughput rate. Shortened blocks are supported with granularity of 128-bit boundaries and 384 or 512 parity bits puncturing is also optionally supported. The ntLDPCD_G98042 decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Offset Min-Sum Algorithm (OMS) or Layered Lambda-min Algorithm (LMIN). Selecting between the two algorithms presents a decoding performance vs. system resources utilization trade-off. The OMS algorithm is chosen for this implementation, given the high code rate of the Parity Check Matrix (PCM). The ntLDPCD_G98042 decoder IP implements a 256-bit parallel systematic LDPC layered decoder. Each layer corresponds to Z=256 expanded rows of the original LDPC matrix. Each layer element corresponds to the active ZxZ shifted identity sub-matrices within the layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers’ LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder IP also features a powerful optional syndrome check early termination (ET) criterion, to maintain identical error correction performance, while significantly increasing its throughput rate and/or reducing hardware cost. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. A top level architecture deployment wrapper allows to expand the parallelism degree of the decoder before synthesis, effec-tively implementing a trade-off between utilized area and throughput rate. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components at 128-bit parallel bus interface. This logic is easily portable into any communication protocol, like AXI4 stream IF.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection, Ethernet, Fibre Channel, Optical/Telecom
View Details

ntVIT Configurable Viterbi FEC System

Convolutional FEC codes are very popular because of their powerful error correction capability and are especially suited for correcting random errors. The most effective decoding method for these codes is the soft decision Viterbi algorithm. ntVIT core is a high performance, fully configurable convolutional FEC core, comprised of a 1/N convolutional encoder, a variable code rate puncturer/depuncturer and a soft input Viterbi decoder. Depending on the application, the core can be configured for specific code parameters requirements. The highly configurable architecture makes it ideal for a wide range of applications. The convolutional encoder maps 1 input bit to N encoded bits, to generate a rate 1/N encoded bitstream. A puncturer can be optionally used to derive higher code rates from the 1/N mother code rate. On the encoder side, the puncturer deletes certain number of bits in the encoded data stream according to a user defined puncturing pattern which indicates the deleting bit positions. On the decoder side, the depuncturer inserts a-priori-known data at the positions and flags to the Viterbi decoder these bits positions as erasures. The Viterbi decoder uses a maximum-likelihood detection recursive process to cor-rect errors in the data stream. The Viterbi input data stream can be composed of hard or soft bits. Soft decision achieves a 2 to 3dB in-crease in coding gain over hard-decision decoding. Data can be received continuously or with gaps.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.11, 802.16 / WiMAX, Bluetooth, Error Correction/Detection, Optical/Telecom
View Details

ntLDPC_5GNR 3GPP TS 38.212 compliant LDPC Codec

The ntLDPC_5GNR Base Graph Encoder IP Core is defined in 3GPP TS 38.212 standard document and it is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. The specification defines two sets of LDPC Base Graphs and their respective derived Parity Check Matrices. Each Base Graph can be combined with 8 sets of lifting sizes (Zc) in a total of 51 different lifting sizes. This way by using the 2 Base Graphs, the 5G NR specification defines up to 102 possible distinct LDPC modes of operation to select from, for optimum decoding performance, depending on target application code block size and code rate (using the additional rate matching module features). For Base Graph 1 we have LDPC(N=66xZc,K=22xZc) sized code blocks, while for Base Graph 2 we have LDPC(N=50xZc,K=[6,8,9,10]xZc) sized code blocks. The ntLDPCE_5GNR Encoder IP implements a multi-parallel systematic LDPC encoder. Parallelism depends on the selected lifting sizes subsets chosen for implementation. Shortened blocks are supported with granularity at lifting size Zc-bit boundaries. Customizable modes generation is also supported beyond the scope of the 5G-NR specification with features such as: “flat parity bits puncturing instead of Rate Matching Bit Selection”, “maintaining the first 2xZc payload bits instead of eliminating it before transmission”, etc. The ntLDPCD_5GNR decoder IP implements a maximum lifting size of Zc_MAX-bit parallel systematic LDPC layered decoder. Each layer corresponds to Zc_MAX expanded rows of the original LDPC matrix. Each layer element corresponds to the active ZcxZc shifted identity sub-matrices within the layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder IP also features a powerful optional early termination (ET) criterion, to maintain practically equivalent error correction performance, while significantly increasing its throughput rate and/or reducing hardware cost. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI4 stream IF.

Noesis Technologies P.C.
All Foundries
All Process Nodes
3GPP-5G, Error Correction/Detection
View Details

Ncore Cache Coherent Interconnect

The Ncore Cache Coherent Interconnect is designed to tackle the complexities inherent in multicore SoC environments. By maintaining coherence across heterogeneous cores, it enables efficient data sharing and optimizes cache use. This in turn enhances the throughput of the system, ensuring reliable performance with reduced latency. The architecture supports a wide range of cores, making it a versatile option for many applications in high-performance computing. With Ncore, designers can address the challenges of maintaining data consistency across different processor cores without incurring significant power or performance penalties. The interconnect's capability to handle multicore scenarios means it is perfectly suited for advanced computing solutions where data integrity and speed are paramount. Additionally, its configuration options allow customization to meet specific project needs, maintaining flexibility in design applications. Its efficiency in multi-threading environments, coupled with robust data handling, marks it as a crucial component in designing state-of-the-art SoCs. By supporting high data throughput, Ncore keeps pace with the demands of modern processing needs, ensuring seamless integration and operation across a variety of sectors.

Arteris
15 Categories
View Details

LightningBlu - High-Speed Rail Connectivity

LightningBlu is a cutting-edge solution provided by Blu Wireless, designed specifically to serve the high-speed rail industry. This technology offers consistent, on-the-move multi-gigabit connectivity between trackside and train, which ensures a reliable provision of on-board services. These services include seamless internet access, enhanced entertainment options, and real-time information, creating a superior passenger experience while traveling. Utilizing mmWave technology, LightningBlu is capable of offering carrier-grade performance, supporting Mobility applications with remarkable consistency even at speeds exceeding 300 km/h. Such capabilities promise to revolutionize the connectivity standards within the high-speed rail networks. By integrating this advanced system, railway operators can ensure uninterrupted communication channels, thus optimizing their operations and boosting passenger satisfaction. The solution primarily operates within the mmWave spectrum of 57-71 GHz, making it a future-proof choice that aligns with the expanding global demand for high-quality, high-speed railway communications. With LightningBlu, Blu Wireless is spearheading the movement towards carbon-free, robust connectivity solutions, setting a new standard in the transportation sector.

Blu Wireless Technology Ltd.
17 Categories
View Details

10G TCP Offload Engine + MAC + PCIe + Host IF Ultra-Low Latency

The 10G TCP Offload Engine is a sophisticated high-performance solution designed to offload TCP processing from the host CPU. Utilizing ultra-low latency technology, this IP incorporates a TCP/UDP stack integrated into high-speed FPGA hardware, ideal for networking environments demanding efficient processing and high throughput. Designed to handle up to 16,000 concurrent sessions, it manages TCP stacks within an impressive 77 nanoseconds, offering unmatched performance without straining the CPU. The engine supports 10 Gigabit Ethernet connectivity, ensuring seamless network integration and optimal data flow. With features like full TCP stack implementation and zero host CPU processing requirement, the offload engine is perfect for real-time cloud computing and AI networking applications, significantly reducing power consumption and enhancing bandwidth utilization. Equipped with a range of additional functions, such as large send offload and checksum offload, it optimizes network operations by eliminating bottlenecks typically associated with software-based solutions. It's an excellent choice for data centers and enterprise environments struggling with CPU bottlenecks.

Intilop Corporation
AMBA AHB / APB/ AXI, Error Correction/Detection, Ethernet, Interlaken, MIPI, PCI, Receiver/Transmitter, SAS, SATA, USB, V-by-One
View Details

Time-Triggered Protocol

The Time-Triggered Protocol (TTP) is a cornerstone of TTTech's offerings, designed for high-reliability environments such as aviation. TTP ensures precise synchronization and communication between systems, leveraging a time-controlled approach to data exchange. This makes it particularly suitable for safety-critical applications where timing and order of operations are paramount. The protocol minimizes risks associated with communication errors, thus enhancing operational reliability and determinism. TTP is deployed in various platforms, providing the foundation for time-deterministic operations necessary for complex systems. Whether in avionics or in industries requiring strict adherence to real-time data processing, TTP adapts to the specific demands of each application. By using this protocol, industries can achieve dependable execution of interconnected systems, promoting increased safety and reliability. In particular, TTP's influence extends into integrated circuits where certifiable IP cores are essential, ensuring compliance with stringent industry standards such as RTCA DO-254. Ongoing developments in TTP also include tools and methodologies that facilitate verification and qualification, ensuring that all system components communicate effectively and as intended across all operating conditions.

TTTech Computertechnik AG
AMBA AHB / APB/ AXI, CAN, CAN XL, CAN-FD, Cell / Packet, Error Correction/Detection, Ethernet, FlexRay, LIN, MIPI, Processor Core Dependent, Safe Ethernet, Temperature Sensor
View Details

High PHY Accelerators

AccelerComm’s High PHY Accelerators serve as the cornerstone of their full physical layer offerings. These accelerators, available as ASIC and FPGA-ready IP cores, integrate with customer solutions using standard interfaces, bolstered by bit-accurate models for simulation and verification, expediting system-level integration with minimum risk. Incorporating space-hardened platforms from industry leaders, these accelerators leverage patented algorithms to maximize throughput and minimize both power consumption and hardware demands. This ensures they are perfectly suited for deploying in high-performance, space-specific applications where environmental factors impose unique restrictions. Designed to be adaptable across multiple platforms, these accelerators capitalize on years of technological advancement to provide efficient solutions, thereby elevating the capabilities of modern communication systems to meet and exceed the sophisticated demands of the 5G and 6G landscape.

AccelerComm Limited
3GPP-5G, 3GPP-LTE, Error Correction/Detection, Ethernet, JESD 204A / JESD 204B, Modulation/Demodulation, W-CDMA
View Details

High Speed Data Bus (HSDB) IP Core

The High Speed Data Bus (HSDB) IP Core is engineered to provide a seamless PHY and Mac layer implementation that is fully compatible with the HSDB standard. It is specifically designed for easy integration, offering a user-friendly interface that can be incorporated into a variety of systems without a hitch. Known for its exceptional throughput, this core ensures F-22 aircraft compatibility, making it a robust choice in demanding avionics applications. This IP core excels in establishing reliable high-speed communication links, crucial for applications where data integrity and timing are paramount. By facilitating streamlined data flow with minimized latency, the HSDB IP Core enhances operational efficiency significantly. It is an ideal solution for environments requiring stringent adherence to high data rates and precise timing protocols.

New Wave Design
AMBA AHB / APB/ AXI, ATM / Utopia, CXL, Error Correction/Detection, Ethernet, HDLC, Modulation/Demodulation, RapidIO, Receiver/Transmitter, SAS, SDRAM Controller
View Details

LDPC

AccelerComm's LDPC Channel Coding solutions are crafted to meet the exacting requirements of 5G standards, offering unprecedented performance and efficiency. Complete with encoder and decoder capabilities, this solution enhances hardware and power efficiency, meeting all 3GPP specified throughput and error correction targets crucial for the physical layer. Ideal for integration within FPGA or ASIC applications, the IP is engineered to handle typical NTN channel conditions effectively, showcasing a 0.8dB improvement in decoder performance, which notably reduces latency and HARQ retries. This efficiency is achieved through innovative algorithms developed from AccelerComm's research, ensuring minimal error floors. This flexible package underscores the ease of integration, providing adaptable parameters to match diverse application needs, thus offering a practical solution for industries aiming to optimize their 5G infrastructures.

AccelerComm Limited
3GPP-5G, 3GPP-LTE, Error Correction/Detection, HDLC, JESD 204A / JESD 204B, UWB
View Details

ntRSD Configurable Reed Solomon Decoder

ntRSD core implements a time-domain Reed-Solomon decoding algorithm. The core is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSD core supports erasure decoding thus doubling its error correction capability. The core also supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.11, 802.16 / WiMAX, Bluetooth, Digital Video Broadcast, Error Correction/Detection, Ethernet, Optical/Telecom
View Details

TT-Ascalon™

The TT-Ascalon™ is a high-performance RISC-V CPU designed for general-purpose control, emphasizing power and area efficiency. This processor features an Out-of-Order, superscalar architecture that adheres to the RISC-V RVA23 profile, co-developed with Tenstorrent's own Tensix IP for optimized performance. TT-Ascalon™ is highly scalable, suitable for various high-demand applications that benefit from robust computational capabilities. It's engineered to deliver unmatched performance while maintaining energy efficiency, making it ideal for operations that require reliability without compromising on speed and power efficiency.

Tenstorrent
AI Processor, CPU, Error Correction/Detection, IoT Processor, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor
View Details

10G TCP Offload Engine (TOE)

The 10G TCP Offload Engine (TOE) is engineered to provide superior network performance by offloading TCP/IP processing tasks from the CPU. Implemented on advanced FPGA platforms, it ensures ultra-low latency and exceptional throughput by handling TCP tasks directly within the hardware. This engine supports high-performance applications by streamlining network data flow, drastically cutting down CPU load, and providing efficient data packet handling with minimal delay. Its architecture allows for optimal CPU usage, enabling it to support a larger number of sessions and superior bandwidth handling. The 10G TOE is especially suited for environments where efficient data processing and low latency are vital, such as financial trading platforms, real-time analytics, and other enterprise-level applications. The integration of direct hardware processing ensures consistent high-speed performance.

Intilop Corporation
AMBA AHB / APB/ AXI, Error Correction/Detection, Ethernet, Interlaken, PCI, Receiver/Transmitter, SAS, SATA, USB
View Details

8b/10 Decoder

The 8b/10 Decoder by Roa Logic is a comprehensive implementation of the 8b/10b encoding scheme developed by Widmer and Franaszek. This decoder offers a full solution that automates special comma detection and identifies K28.5 characters, which is essential for maintaining data integrity during transmission. It is designed for environments where precise data decoding is crucial, supporting seamless data transfer across various communication interfaces. This decoder ensures high accuracy in data interpretation by meticulously translating encoded bitstreams back to their original data form. Crafted with precision, it facilitates reliable data communication while reducing error rates during transmission. It is ideally suited for applications requiring error-free data exchange, where decoding accuracy is paramount. Supporting a range of protocols that utilize the 8b/10b scheme, the decoder’s robust design ensures compatibility and reliable performance. Its straightforward integration supports developers in creating efficient platforms for data handling, reinforcing the reliability of communication systems at large.

Roa Logic BV
Coder/Decoder, Error Correction/Detection, HDLC, Other
View Details

ntRSC_DP1.4 Display Port 1.4 Reed Solomon Codec

The ntRSC_DP1.4 IP core is compliant with Display Port 1.4 standard as published by Video Electronics Standards Association (VESA) for use in DSC (Display Stream Compression) technology. It is based on Reed-Solomon RS(254,250), 10 bit symbols, forward error correction code, where the codeword block consists of 250 information symbols and 4 RS parity symbols. The ntRSC_DP1.4 FEC IP Core ensures error resilient / glitch-free compressed video transport (DSC) to external displays. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection
View Details

ntRSE Configurable Reed Solomon Encoder

ntRSE core implements the Reed Solomon encoding algorithm and is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSE core supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.16 / WiMAX, Bluetooth, Digital Video Broadcast, Error Correction/Detection, Ethernet, Optical/Telecom
View Details

ntRSD_UF Ultra Fast Configurable Reed Solomon Decoder

ntRSD_UF core implements a time-domain Reed-Solomon decoding algorithm. The core is parameterized in terms of bits per symbol, maximum codeword length, maximum number of parity symbols as well as I/O data width, internal datapath and decoding engines parallelism. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSD_UF core supports erasure decoding thus doubling its error correction capability. The core also supports continuous or burst decoding. The core is designed and optimized for applications that need very high throughput data rates. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection, Ethernet, Optical/Telecom
View Details

Polar

AccelerComm’s Polar Channel Coding product addresses the uplink and downlink needs with a comprehensive processing chain that ensures streamlined integration and error-free performance. Utilizing advanced PC- and CRC-aided SCL polar decoding techniques, this IP is designed to achieve unparalleled error correction outcomes without compromising performance. Scalable at synthesis-time to adjust parallelism, latency, and throughput, the Polar Channel Coding IP offers versatile integration options, allowing users to configure the decoder list size for optimal application fit. This flexibility ensures that varying application needs are met effectively, providing a tailored approach to signal processing challenges. By focusing on minimal additional work upon integration, AccelerComm’s Polar Channel Coding stands out as a key component in developing efficient 5G NR uplink and downlink solutions, supporting seamless incorporation into existing systems for enhanced communication reliability.

AccelerComm Limited
3GPP-5G, 3GPP-LTE, Error Correction/Detection, HDLC, JESD 204A / JESD 204B, UWB
View Details

TCP/IP Offload Engine

Chevin Technology's TCP/IP Offload Engine is crafted to enhance the performance of network systems within FPGA infrastructures. This IP core effectively manages TCP/IP processing, offloading tasks from the main processor to improve data handling efficiency. By optimizing network throughput and minimizing overhead, the engine is an invaluable asset for scalable network solutions. With support for both 10G and 25G Ethernet, the TCP/IP Offload Engine provides broad compatibility and functionality, ensuring smooth operations across diverse FPGA applications. The core's design reduces latency and power draw, aligning with industry needs for efficient and sustainable technology solutions. Successful integrations of the TCP/IP Offload Engine have been seen in sectors such as medical research and industrial imaging, where high-speed data transfer and processing are crucial. This IP core underscores Chevin Technology's dedication to delivering performance-driven solutions that cater to complex network environments.

Chevin Technology
All Foundries
All Process Nodes
AMBA AHB / APB/ AXI, Error Correction/Detection, Ethernet, Receiver/Transmitter, SAS, SATA, V-by-One
View Details

Complete 5G NR Physical Layer

Optimized for 5G NTN hybrid networks, AccelerComm's Complete 5G NR Physical Layer solution enhances link performance while maintaining industry-leading size, weight, and power (SWaP) metrics. Designed to support diverse use cases such as broadband, direct-to-device (D2D), and defense applications, the solution is adaptable across various platforms including ARM CPUs, AI Engines, FPGA, and ASIC-ready IP cores. The solution allows early end-to-end integration by running on a range of Commercial off the Shelf (COTS) boards, reducing project risk. Employing innovative algorithms, the physical layer not only achieves high throughput but also supports a vast number of users per chipset, capable of scaling to the capacity needs of next-generation satellite constellations. Moreover, AccelerComm’s unique approach emphasizes flexibility and rapid integration, utilizing standardized interfaces that ensure smooth inclusion in a variety of projects. With a focus on minimizing latency and enhancing error correction capabilities, this solution is crafted to resolve the unique challenges presented by 5G NTN environments.

AccelerComm Limited
3GPP-5G, 3GPP-LTE, Error Correction/Detection, Ethernet, JESD 204A / JESD 204B, Network on Chip, UWB, W-CDMA, Wireless USB
View Details

UDP/IP Ethernet Communication

The UDP/IP Ethernet Communication core is tailored for seamless integration of Ethernet capabilities into FPGA-based systems. It allows subsystems to communicate efficiently over networks using the User Datagram Protocol (UDP), which is essential for applications requiring fast, connectionless data transmission. This IP core is highly suitable for real-time data communication needs in industrial and commercial networking environments, providing robust performance in digital communication.

Enclustra GmbH
AMBA AHB / APB/ AXI, D2D, Error Correction/Detection, Ethernet, RapidIO, SAS, SATA, USB
View Details

hellaPHY Positioning Solution

The hellaPHY Positioning Solution from PHY Wireless is crafted to optimize IoT deployments across various environments using 5G networks. It melds advanced algorithms with cutting-edge edge computing capabilities to deliver stunningly accurate and efficient location services. The technology, by leveraging existing cellular infrastructures, achieves superior accuracy akin to GNSS systems but at a fraction of the power and data cost, making it ideal for environments where traditional systems falter. What distinguishes hellaPHY is its ability to independently estimate locations within the device, preserving user privacy by avoiding external storage or cloud computation of location data. This self-sufficiency not only ensures data security but also dramatically reduces network congestion, furthering its utility in dense IoT networks. The hellaPHY solution boasts adaptability to existing infrastructure, providing operators with unprecedented spectral efficiency. It allows seamless integration into various devices with minimal impact on current setups, providing a compelling reason for firms to employ this breakthrough technology for boosting IoT scalability and performance.

PHY Wireless Inc.
3GPP-5G, 3GPP-LTE, AMBA AHB / APB/ AXI, ATM / Utopia, CAN, Error Correction/Detection, Ethernet, Fibre Channel, GPS, PCI, PLL, USB, V-by-One, W-CDMA, Wireless Processor
View Details

ntRSC_IESS IESS compliant Reed Solomon Codec

ntRSC_IESS core is a highly integrated solution implementing a time-domain Reed-Solomon Forward Error Correction algorithm. The core supports several programming features including codeword size, error threshold, number of parity bytes, reverse or forward order of the output, mode of operation (encode, decode or pass-through), shortened code support, erasures or error only decoding. Very low latency, high speed, simple interfacing and programmability make this core ideal for many applications including Intelsat IESS-308, DTV, DBS, ADSL, Satellite Communications, High performance modems and networks.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Digital Video Broadcast, Error Correction/Detection
View Details

2048B ECC Error Correction for High-Density NAND

Featuring G15, this IP is optimized for 2KB correction blocks, suitable for NAND devices with larger page sizes, such as 8KB. The design is aligned with methods seen in the G14X, but it extends its reach with longer codewords for comprehensive coverage of high-density NAND. The design supports a wide array of block sizes and configurational setups, making it highly adaptable to varying design needs. Additional error correction capabilities can be integrated based on client requirements, reinforcing its bespoke delivery.

Cyclic Design
Cryptography Cores, DDR, Error Correction/Detection, Flash Controller, NVM Express, Processor Core Independent, SDRAM Controller
View Details

512B ECC Error Correction for NAND

The G13/G13X series is tailored for 512B correction blocks, particularly used in NAND setups with 2KB to 4KB page sizes. While both variants are crafted to manage the demands of SLC NAND transitions to finer geometries, the G13X allows for correction of a higher number of errors. Designed to fit seamlessly into existing controller architectures, it enables extensions of current hardware and software capabilities without extensive new investments. It offers area optimization through parameter adjustments and supports a range of channel configurations for broad applicability.

Cyclic Design
Cryptography Cores, DDR, Error Correction/Detection, Flash Controller, NVM Express, Processor Core Independent, SDRAM Controller
View Details

ntTPC Configurable Turbo Product Codec

In channel coding redundancy is inserted in the transmitted information bit-stream. This redundant information is used in the decoder to eliminate the channel noise. The error correction capability of a FEC system strongly depends on the amount of redundancy as well as on the coding algorithm itself. TPCs perform well in the moderate to high SNRs because the effect of error floor is less. As TPCs have more advantage when a high rate code is used, they are suitable for commercial applications in wireless and satellite communications. The ntTPC Turbo Product Codec IP core is consisted of the Turbo Product Encoder (ntTPCe) and the Turbo Product Decoder (ntTPCd) blocks. The product code C is derived from two/three constituent codes, namely C1, C2 and optionally C3. The information data is encoded in two/three dimensions. Every row of C is a code of C2 and every column of C is a code of C1. When the third coding dimension is enabled, then there are C3 C1*C2 data planes. The ntTPC core supports both e-Hamming and Single Parity Codes as the constituent codes. The core also supports shortening of rows or columns of the product table, as well as turbo shortening. Shortening is a way of providing more powerful codes by removing information bits from the code. The ntTPCe core receives the information bits row by row from left to right and transmits the encoded bits in the same order. It consists of a row, column and 3D encoder. The ntTPCd decoder receives soft information from the channel in the 2’s complement number system and the input samples are received row by row from left to right. The implemented decoding algorithm computes the extrinsic information for every dimension C1, C2, C3 by iteratively decoding words that are near the soft-input word. An advanced scalable and parametric design approach produces custom design versions tailored to end customer applications design tradeoffs.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.16 / WiMAX, Error Correction/Detection
View Details

ntLDPC_8023CA IEEE 802.3ca-2020 compliant LDPC Codec

The ntLDPC_8023CA (17664,14592) IP Core is defined in IEEE 802.3ca-2020 standard document and it is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPCE_8023CA encoder IP implements a 256-bit parallel systematic LDPC encoder. The Generator LDPC Matrix is calculated off-line, compressed and stored in ROM. It is partitioned to 12 layers and each layer when multiplied by the 14592 payload block pro-duces 256 parity bits. The multiplier architecture may be parameterized before synthesis to generate multiple multiplier instances [1 to 6], in order to effectively process multiple layers in parallel and improve the IP throughput rate. Shortened blocks are supported with granularity of 128-bit boundaries and 384 or 512 parity bits puncturing is also optionally supported. The ntLDPCD_8023CA decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Offset Min-Sum Algorithm (OMS) or Layered Lambda-min Algorithm (LMIN). Selecting between the two algorithms presents a decoding performance vs system resources utilization trade-off. The OMS algorithm is chosen for this implementation, given the high code rate of the Parity Check Matrix (PCM). The ntLDPCD_8023CA decoder IP implements a 256-bit parallel systematic LDPC layered decoder. Each layer corresponds to Z=256 expanded rows of the original LDPC matrix. Each layer element corresponds to the active ZxZ shifted identity sub-matrices within the layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder IP also features a powerful optional early termination (ET) criterion, to maintain practically equivalent error correction performance, while significantly increasing its throughput rate and/or reducing hardware cost. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI4 stream IF.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection, Ethernet, Optical/Telecom
View Details

Hamming Code ECC

Hamming Code ECC developed by Secantec, Inc. offers a straightforward yet powerful method for error correction in digital communications. This IP is engineered to correct single-bit errors and detect double-bit errors, making it a critical component in systems where reliability is paramount. This code is particularly useful in environments where small data integrity issues can result in significant operational setbacks. Not only does it provide effective error correction, but it also enhances overall system performance by reducing the need for costly data retransmissions. Its simplicity and ease of implementation make it suitable for a wide range of applications, from computer memory systems to complex networking solutions. Through its efficient error detection and correction capabilities, the Hamming Code ECC ensures data reliability without imposing significant resource demands. Its robust design is ideal for integration into systems that benefit from cost-effective and efficient error rectification techniques, promoting smooth and uninterrupted data flow.

Secantec, Inc.
Cell / Packet, Error Correction/Detection
View Details

UDP Offload Engine

The UDP Offload Engine is an advanced FPGA IP Core tailored for high-speed communication needs, supporting a wide spectrum of Ethernet speeds ranging from 10 GbE to 400 GbE. It efficiently manages the UDP protocol stack offloading UDP operations from software to hardware, which significantly enhances data throughput and minimizes processor utilization. This IP core adheres to established UDP/IPv4 standards, incorporating advanced features like checksum computation, segmentation, reassembly, and L4 UDP multicast pre-selection, making it exceptionally suitable for high-performance network environments where efficiency and reliability are paramount. Its compatibility with industry-standard Ethernet MACs facilitates seamless integration into existing network architectures. Designed to support Super-Jumbo Frames and featuring an arbitrary datagram PDU limit up to 64K Bytes, the UDP Offload Engine delivers a robust solution for network and communication applications, prominently reducing overhead and providing swift yet reliable data transfer capabilities beneficial for modern networking tasks.

Atomic Rules LLC
ATM / Utopia, Error Correction/Detection, Ethernet, I2C, IEEE1588, Receiver/Transmitter, SATA, USB
View Details

Secure Protocol Engines

The Secure Protocol Engines by Secure-IC are designed to offload and enhance network and security processing tasks within an SoC environment. These high-performance IP blocks ensure efficient management of cryptographic operations and facilitate secure data exchanges across networks. By integrating these engines, developers can achieve improved throughput and reduced latency in their security implementations, which is critical for maintaining the performance and safety of connected devices. These engines support standard protocols, ensuring compatibility with a wide range of applications.

Secure-IC
14 Categories
View Details

Reed Solomon Erasure Code

The Reed Solomon Erasure Code offered by Secantec, Inc. is tailored for applications that require high reliability in data transmission where the location of erasure is clear, but the original values are not. This code allows the recovery of original data after computation on the received code words, leveraging redundant symbols that accompany the data. It has notable utility in systems like RAID, where it mitigates the risk of data loss from disk drive failures, and in communications where precise error location is advantageous. This IP finds its strength in rectifying errors introduced during transmission, aiding systems that suffer from frequent noise disturbances, thus ensuring stability and reducing downtime. The Reed Solomon Erasure Code works efficiently in environments with known erasure locations, combining error correction with storage recovery features to maintain the integrity of data being transmitted. The flexibility and efficiency of this code make it ideal for environments where some of the data might be incorrect, such as in communication systems dealing with high-speed data streams or storage devices. Through precise error correction capabilities, it supports durability and consistency in data handling, pushing the boundaries of secure communications.

Secantec, Inc.
Cell / Packet, Error Correction/Detection
View Details

Time-Sensitive Networking

Time-Sensitive Networking (TSN) represents TTTech's continued leadership in the field of data communication standards. Particularly beneficial in sectors requiring high bandwidth and interoperability, TSN facilitates the establishment of networks where timing precision and control over data traffic are critical. TSN supports synchronization across devices, using a strict traffic scheduling system that ensures data packets are transmitted in a timely manner. TSN's versatile architecture allows it to be adopted in various industries, such as automotive, industrial automation, and information technology. As a bridge between operational technology and information technology domains, TSN enables seamless data flow, fostering a more connected ecosystem. Its implementation ensures not only enhanced performance but also the incorporation of advanced features such as redundancy for reliability and the prioritization of critical data streams. Designed for modern network requirements, TSN technologies developed by TTTech come with extensive tools and resources that aid in the configuration and deployment of networks. By aligning with IEEE standards, TSN protocols promote interoperability across numerous platforms, thereby supporting the convergence of diverse network systems into a single, cohesive architecture.

TTTech Computertechnik AG
AMBA AHB / APB/ AXI, Cell / Packet, Error Correction/Detection, Ethernet, FlexRay, IEEE1588, Input/Output Controller, MIPI, Safe Ethernet
View Details

DVB-C Demodulator

The DVB-C Demodulator is engineered to meet the specific needs of cable video and broadband data transmission systems with an integrated Forward Error Correction (FEC) capability. This core is structured to enhance demodulation processes, streamlining communications and ensuring data reliability across transmission channels. Suitable for a variety of digital broadcasting requirements, it serves as a critical component in maintaining signal integrity and performance.

Commsonic Ltd.
Coder/Decoder, Error Correction/Detection, Ethernet, Interleaver/Deinterleaver, Modulation/Demodulation
View Details

PCD03D DVB-RCS and IEEE 802.16 WiMAX Turbo Decoder

The PCD03D Turbo Decoder is adept at handling multiple state decoding for standards such as DVB-RCS and IEEE 802.16 WiMAX. Its core design features an 8-state duobinary decoding structure, facilitating precise and quick signal deconstruction. Additionally, the optional inclusion of a 64-state Viterbi decoder enhances versatility and performance in various environments. This decoder is tailored for applications where agility and high data throughput are critical, making it an invaluable asset in wireless communication infrastructures. The decoder’s architecture supports expansive VHDL core integration, providing durable solutions across FPGA platforms.

Small World Communications
Digital Video Broadcast, Error Correction/Detection, Ethernet, Safe Ethernet
View Details

Reed Solomon Error Correcting Code ECC

Secantec's Reed Solomon Error Correcting Code ECC is engineered to deliver high reliability in data transmission environments, correcting both burst and random errors. This IP is recognized for its effectiveness in environments where high-speed data transfer aligns with strict error performance standards. Designed to enhance data integrity in systems subjected to noise and signal distortion, this code is adaptable to various application requirements, ensuring minimal error rates in data transmissions. The Reed Solomon code is crucial for scenarios such as optical communications, satellite systems, and broadcasts, where error minimization is essential. Its implementation offers the flexibility to handle different data block sizes and error correction capacities, making it suitable for customization according to specific needs. This adaptability allows it to seamlessly integrate into systems requiring consistent data accuracy and reliability, marking it as a staple in dependable communication solutions.

Secantec, Inc.
Cell / Packet, Error Correction/Detection
View Details

100G UDP Offload Engine

XtremeSilica's 100G UDP Offload Engine provides an advanced solution for optimizing User Datagram Protocol (UDP) performance within high-bandwidth network infrastructures. This offload engine enables high-speed packet transmission by removing the processing burden from the CPU, streamlining data flow across networks and enhancing throughput. This technology is particularly beneficial in applications that prioritize fast data delivery over established connection protocols, such as streaming media, VoIP, and real-time data feeds. By enhancing efficiency, enterprises can achieve scalability without incurring additional CPU load, optimizing performance in demanding network environments while maintaining system responsiveness. Built for scalability and efficiency, the 100G UDP Offload Engine allows seamless deployment into existing networks, promoting higher data transfer rates and lower latency. With industry-standard compliance, it integrates effortlessly with existing hardware, supporting unobtrusive transitions and scalable network growth strategies.

XtremeSilica
Error Correction/Detection, Ethernet
View Details

BCH Error Correcting Code ECC

Designed for high reliability and efficiency, the BCH Error Correcting Code ECC from Secantec, Inc. ensures robust protection against errors in data communication systems. This IP utilizes the BCH algorithm, renowned for its capability to correct multiple errors within data sequences, making it an essential component in environments prone to error injection. The BCH code is ideally suited for systems that need to support high-speed data transfer with stringent reliability requirements. It offers a flexible architecture that can be implemented in diverse environments, whether in digital communication systems or error-tolerant storage systems. By adapting to varying levels of error and noise, the BCH code provides a consistent performance benchmark in safeguarding data integrity. This IP's versatility allows it to be incorporated into both hardware and software solutions, addressing a broad array of use cases from wireless communications to robust error correction in static memories. Its scalable design ensures that it can be tailored to fit specific application needs, delivering unmatched performance under various operational conditions.

Secantec, Inc.
Cell / Packet, Error Correction/Detection
View Details

PCE04I Inmarsat Turbo Encoder

The PCE04I Inmarsat Turbo Encoder is engineered to optimize data encoding standards within satellite communications. Leveraging advanced state management, it enhances data throughput by utilizing a 16-state encoding architecture. This sophisticated development enables efficient signal processing, pivotal for high-stakes communication workflows. Furthermore, the PCE04I is adaptable across multiple frameworks, catering to diverse industry requirements. Innovation is at the forefront with the option of integrating additional state Viterbi decoders, tailoring performance to specific needs and bolstering reliability in communications.

Small World Communications
CAN, Digital Video Broadcast, Error Correction/Detection, Ethernet, W-CDMA
View Details

ntDVBS2_FEC DVB-S2 compliant FEC Codec

The ntDVBS2_FEC transmitter and receiver IPs, each instantiate an outer BCH and inner LDPC concatenated pair of encoders and decoders respectively. The Bose, Chaudhuri, and Hocquenghem (BCH) codes are the largest category of the powerful error-correction cyclic codes and belong to the block codes that are a generalization of the Hamming codes for multiple-error corrections. The Low Density Parity Check (LDPC) codes are powerful, capacity approaching channel codes and have exceptional error correction capabilities. The high degree of parallelism that they offer enables efficient, high throughput hardware architectures. The concatenation of these two error correction algorithms enable performance well close to the Shannon limit. The ntBCH_DVBS2 encoder performs BCH encoding to payload frames by appending calculated parity bits at the end of each frame. The ntBCH_DVBS2 decoder finds the error locations within a received frame, tries to correct them and indicates a successful or failed decoding procedure. The ntLDPC_DVBS2 IP Core is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPC_DVBS2 encoder IP implements a 360-bit parallel systematic LDPC IRA encoder. An off-line profiling Matlab script processes the original IRA matrices and produces a set of constants, associated with the matrix and hardcoded in the RTL encoder. Encoding is performed as a three part recursive computation process, where row sums, checksums of all rows column-wise and parity bit sums are calculated. The ntLDPC_DVBS2 decoder IP implements an approximation of the log-domain LDPC iterative decoding algorithm (Belief propagation), known as Layered Lambda-min2 Algorithm. The core is highly reconfigurable in terms of area, throughput and error correction performance trade-offs and is fully compliant to the DVB-S2 standard. Two highly complex off-line preprocessing series of procedures are performed to optimize the DVB LDPC parity check matrices to enable efficient RTL implementation. The ntLDPC_DVBS2 decoder IP implements a 360-LLR parallel systematic LDPC layered decoder. Two separate off-line profiling Matlab series of scripts are used to (a) process the original IRA matrices and produce the layered matrices equivalents (b) resolve any possible conflicts produced by the layered transformation. Each layer corresponds to 360 expanded rows of the original LDPC matrix. Each layer element corresponds to the active 360x360 shifted identity sub-matrices, within a layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder also IP features two powerful optional early termination (ET) criteria (convergence and parity check), to maintain practically the same error correction performance, while significantly increasing its throughput rate. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control hand-shaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI.

Noesis Technologies P.C.
Digital Video Broadcast, Error Correction/Detection
View Details

ntLDPC_DVBS2X DVBS2/S2X compliant LDPC Codec

The ntLDPC_DVBS2X IP Core is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPC_DVBS2X decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Offset Min-Sum Algorithm or Layered Lambda-min Algorithm. Selecting between the two algorithms presents a decoding performance .vs. system resources utilization trade-off. The core is highly reconfigurable and fully compliant to the DVB-S2 and DVB-S2X standards. Two highly complex off-line preprocessing series of procedures are performed to optimize the DVB LDPC parity check matrices to enable efficient RTL implementation. The ntLDPC_DVBS2X encoder IP implements a 360-bit parallel systematic LDPC IRA encoder. An off-line profiling Matlab script processes the original IRA matrices and produces a set of constants that are associated with the matrix and hardcoded in the RTL encoder. Actual encoding is performed as a three part recursive computation process, where row sums, checksums of all produced rows column-wise and finally transposed parity bit sums are calculated. The ntLDPC_DVBS2X decoder IP implements a 360-bit parallel systematic LDPC layered decoder. Two separate off-line profiling Matlab series of scripts are used to (a) process the original IRA matrices and produce the layered matrices equivalents (b) resolve any possible conflicts produced by the layered transformation. The decoder IP permutes each block’s parity LLRs to become compatible with the layered decoding scheme and stores channel LLRs to processes them in layered format. Each layer corresponds to 360 expanded rows of the original LDPC matrix. Each layer element corresponds to the active 360x360 shifted identity submatrices, within a layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Digital Video Broadcast, Error Correction/Detection
View Details

Deterministic Ethernet

Deterministic Ethernet, a hallmark of TTTech's technological expertise, offers a stable and predictable network environment for industrial and mission-critical applications. Unlike standard Ethernet, Deterministic Ethernet incorporates time constraints into its data transmission processes, ensuring precise delivery schedules and synchronized communication. This is crucial for automation and control tasks where timing accuracy is non-negotiable. Incorporated across a range of TTTech networks, this technology guarantees that network behavior can be predicted and controlled, enhancing safety and dependability. Whether used in sophisticated vehicular systems, aerospace applications, or industrial controls, Deterministic Ethernet always assures that data packets are delivered as expected, adhering to strict timeframes and reducing latency issues. Deterministic Ethernet integrates seamlessly with various network technologies, facilitating its adoption in environments necessitating robust communication protocols. Its standards compliance supports worldwide interoperability and paves the way for future innovations in networking technologies. By providing deterministic communication paths, systems employing this technology can meet rigorous industry requirements for reliability and precision.

TTTech Computertechnik AG
AMBA AHB / APB/ AXI, Cell / Packet, Error Correction/Detection, Ethernet, FlexRay, IEEE1588, MIPI, Safe Ethernet
View Details

10G Universal Network Probe

Designed for advanced network diagnostics, the 10G Universal Network Probe enables comprehensive traffic monitoring and analysis across OTN and other high-capacity networks. This probe offers versatile compatibility, ensuring streamlined integration into existing infrastructure, a critical function for maintaining high-speed data transmission fidelity and efficiency.

Aliathon Ltd
ATM / Utopia, Error Correction/Detection, Ethernet, Modulation/Demodulation
View Details

Galois Error Correcting Code

Galois Error Correcting Code, developed by Secantec, represents an advanced approach to ensuring data integrity across various channel conditions. This IP capitalizes on Galois field arithmetic, a pivotal area in error correction, to efficiently manage data errors occurring in both noisy and clear channels. Its design ensures minimal resource usage while delivering high performance. Ideal for integration in both ASIC and FPGA systems, this code seamlessly blends with existing architectures without imposing significant overhead. Its asynchronous gate design helps avoid additional clock cycles during encoding and decoding, making it well-suited for embedded systems and applications requiring low latency data processing. Additionally, the Galois Error Correcting Code excels in scenarios involving both multi-bit error correction and the repair of noise-induced data distortions. Its robust design not only addresses transient system errors but also provides a reliable shield against electromagnetic interference that commonly affects chip operations.

Secantec, Inc.
Cell / Packet, Cryptography Cores, Error Correction/Detection, Ethernet
View Details

Interlaken PHY Solution

The Interlaken PHY Solution by StreamDSP offers a high-speed, flexible layer for physical interface control, optimized for broadband communication systems. This solution is ideal for applications that demand reliable data integrity and rapid communication flows across networking equipment. Compatible with Interlaken-based systems, the PHY facilitates heightened scalability and throughput efficiencies. It is crafted for seamless integration with various FPGA platforms, making it suitable for diverse deployment scenarios.

StreamDSP LLC
All Foundries
All Process Nodes
AMBA AHB / APB/ AXI, Error Correction/Detection, Ethernet, Interlaken
View Details

Error Correction

With the increasing speed of serial links, the need for efficient forward error correction (FEC) has become paramount to maintain data integrity over lossy mediums. CoMira's Error Correction technology addresses this by implementing various FEC algorithms that optimize data recovery functionality in high-speed Ethernet applications. Drawing from standards such as the 802.3 Ethernet, CoMira's FEC solutions incorporate both FireCode and Reed Solomon methods. These are pivotal for applications such as 100GBASE-KR4 and 50GBASE-R2, providing substantial gains in error correction performance. The IP architecture ensures seamless integration with CoMira's UMAC, enhancing overall system efficiency. Significantly, CoMira's FEC cores can be deployed standalone, or as part of the UMAC configuration, which adds to their flexibility. By allowing error correction processes to be bypassed when necessary, these cores reduce latency, further optimizing their operation for use in Ethernet and beyond.

CoMira Solutions
Error Correction/Detection, Ethernet
View Details

5G Polar

TurboConcept's 5G Polar encoder/decoder is crafted to meet the demands of modern wireless communication systems, particularly within the 5G network space. This IP core is engineered to deliver exceptional error correction while optimizing data transmission, which is critical for maintaining high performance in network environments. The core is carefully designed to provide seamless operation across various deployment scenarios, offering significant flexibility in ASIC and FPGA platforms. Its design prioritizes both power efficiency and high-speed data processing capabilities, ensuring that it meets the rigorous needs of contemporary telecom infrastructures. With its advanced error correction techniques, the 5G Polar solution enhances the reliability and efficiency of data communications, making it an ideal choice for companies seeking to bolster their network offerings with dependable and high-performance solutions.

TurboConcept
3GPP-5G, 802.11, Error Correction/Detection, Ethernet
View Details
Load more
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt