All IPs > Graphic & Peripheral > Arbiter
In the realm of graphics and peripherals, arbiter semiconductor IPs play a crucial role in managing data flow and resource allocation within integrated circuits. These IP blocks are pivotal in coordinating access to shared resources such as memory banks, buses, and other critical system pathways. An arbiter ensures that multiple components within a chip can communicate effectively without bottlenecks, prioritizing requests to maintain optimal performance, especially in systems where simultaneous data transactions are frequent.
Arbiters are essential in graphics processing units (GPUs), where intense computational tasks require efficient resource management to deliver smooth and high-performance visual outputs. Without effective arbitration, GPUs could experience delays or inefficiencies that might degrade rendering performance or increase latency, affecting user experiences in applications ranging from gaming to professional graphics design.
In addition to their role in graphics, arbiter semiconductor IPs are equally important in peripheral devices that need to manage data exchange between various components. For instance, in systems where multiple input/output operations occur simultaneously—such as USB controllers, network interfaces, or audio processors—arbiters help maintain the required bandwidth and ensure each peripheral can access the central processor or memory resources without interference.
Overall, selecting the right arbiter IP can significantly enhance the efficiency and performance of both graphics and peripheral systems. These IPs are customizable to meet the specific requirements of varied applications, providing designers with the flexibility to optimize their circuits for maximum throughput and reliability. Whether in consumer electronics, industrial applications, or embedded systems, arbiter semiconductor IPs are indispensable for achieving seamless operation and communication across diverse system components.
This ultra-compact and high-speed H.264 core is engineered for FPGA platforms, boasting industry-leading size and performance. Capable of providing 1080p60 H.264 Baseline support, it accommodates various customization needs, including different pixel depths and resolutions. The core is particularly noted for its minimal latency of less than 1ms at 1080p30, a significant advantage over competitors. Its flexibility allows integration with a range of FPGA systems, ensuring efficient compression without compromising on speed or size. In one versatile package, users have access to a comprehensive set of encoding features including variable and fixed bit-rate options. The core facilitates simultaneous processing of multiple video streams, adapting to various compression ratios and frame types (I and P frames). Its support for advanced video input formats and compliance with ITAR guidelines make it a robust choice for both military and civilian applications. Moreover, the availability of low-cost evaluation licenses invites experimentation and custom adaptation, promoting broad application and ease of integration in diverse projects. These cores are especially optimized for low power consumption, drawing minimal resources in contrast to other market offerings due to their efficient FPGA design architecture. They include a suite of enhanced features such as an AXI wrapper for simple system integration and significantly reduced Block RAM requirements. Embedded systems benefit from its synchronous design and wide support for auxiliary functions like simultaneous stream encoding, making it a versatile addition to complex signal processing environments.
Vantablack S-VIS Space Coating is engineered for use in space-qualified applications, excelling in suppressing stray light in optical systems. This coating is highly regarded for its ability to offer extremely high spectrally flat absorption, extending from the ultraviolet through to the near-millimeter wavelengths. Such attributes make it a superior choice for space missions, where light pollution from celestial bodies is a paramount challenge. Designed to withstand the harsh conditions of space, Vantablack S-VIS improves the effectiveness of baffles and calibration systems by reducing both the size and weight of the instrument package. This not only enhances the optical performance but also contributes to cost savings in manufacturing and deployment. The coating has been tested rigorously to ensure it withstands the environmental extremes experienced in space, including thermal stability and resistance to outgassing. For over a decade, Vantablack S-VIS has demonstrated flawless performance in low Earth orbit, particularly on dual star-trackers on disaster monitoring satellites. Its reliability has been proven through numerous successful implementations, including its deployment on the International Space Station. These achievements underscore Surrey NanoSystems' leadership in advanced coating technologies for aerospace applications.
The Platform-Level Interrupt Controller (PLIC) from Roa Logic is a highly adaptable interrupt management system, crafted in accordance with the RISC-V Privileged v1.10 specification. This core seamlessly integrates with AHB-Lite, supporting a wide range of interrupt sources and targets. It provides a robust foundation for managing complex interrupt architectures, essential in modern embedded systems. The PLIC core is meticulously designed for configurability, offering custom parameters for address and data widths, as well as the capacity to set unique priority levels per interrupt source. It includes features like programmable priority thresholds and an interrupt pending queue, allowing for tailored performance to meet the specific needs of an application. This controller ensures efficient handling of interrupt masking using a priority threshold system, further enabling sophisticated event management in multi-tasking environments. With comprehensive documentation and source code available through Roa Logic's GitHub, the PLIC is an accessible solution for developers looking to integrate reliable interrupt control in their RISC-V based systems.
ZIA Stereo Vision by Digital Media Professionals Inc. revolutionizes three-dimensional image processing by delivering exceptional accuracy and performance. This stereo vision technology is particularly designed for use in autonomous systems and advanced robotics, where precise spatial understanding is crucial. It incorporates deep learning algorithms to provide robust 3D mapping and object recognition capabilities. The IP facilitates extensive depth perception and analyzed spatial data for applications in areas like automated surveillance and navigation. Its ability to create detailed 3D maps of environments assists machines in interpreting and interacting with their surroundings effectively. By applying sophisticated AI algorithms, it enhances the ability of devices to make intelligent decisions based on rich visual data inputs. Integration into existing systems is simplified due to its compatibility with a variety of platforms and configurations. By enabling seamless deployment in sectors demanding high reliability and accuracy, ZIA Stereo Vision stands as a core component in the ongoing evolution towards more autonomous and smart digital environments.
ArrayNav represents a significant leap forward in navigation technology through the implementation of multiple antennas which greatly enhances GNSS performance. With its capability to recognize and eliminate multipath signals or those intended for jamming or spoofing, ArrayNav ensures a high degree of accuracy and reliability in diverse environments. Utilizing four antennas along with specialized firmware, ArrayNav can place null signals in the direction of unwanted interference, thus preserving the integrity of GNSS operations. This setup not only delivers a commendable 6-18dB gain in sensitivity but also ensures sub-meter accuracy and faster acquisition times when acquiring satellite data. ArrayNav is ideal for urban canyons and complex terrains where signal integrity is often compromised by reflections and multipath. As a patented solution from EtherWhere, it efficiently remedies poor GNSS performance issues associated with interference, making it an invaluable asset in high-reliability navigation systems. Moreover, the system provides substantial improvements in sensitivity, allowing for robust navigation not just in clear open skies but also in challenging urban landscapes. Through this additive capability, ArrayNav promotes enhanced vehicular ADAS applications, boosting overall system performance and achieving higher safety standards.
aiSim is the world's first ISO26262 ASIL-D certified simulator, specifically designed for ADAS and autonomous driving validation. This state-of-the-art simulator captures the essence of AI-driven digital twin environments and sophisticated sensor simulations, key for conducting high-fidelity tests in virtual settings. Offering a flexible architecture, aiSim reduces reliance on costly real-world testing by recreating diverse environmental conditions like weather and complex urban scenarios, enabling comprehensive system evaluations under deterministic conditions. As a high-caliber tool, aiSim excels at simulating both static and dynamic environments, leveraging a powerful rendering engine to deliver deterministic, reproducible results. Developers benefit from seamless integration thanks to its modular use of C++ and Python APIs, making for an adaptable testing tool that complements existing toolchains. The simulator encourages innovative scenario creation and houses an extensive 3D asset library, enabling users to construct varied, detailed test settings for more robust system validation. aiSim's cutting-edge capabilities include advanced scenario randomization and simulation of sensor inputs across multiple modalities. Its AI-powered rendering streamlines the processing of complex scenarios, creating resource-efficient simulations. This makes aiSim a cornerstone tool in validating automated driving solutions, ensuring they can handle the breadth of real-world driving environments. It is an invaluable asset for engineers looking to perfect sensor designs and software algorithms in a controlled, scalable setting.
Enclustra's Universal Drive Controller is a comprehensive motor control solution encompassing support for DC, brushless, and stepper motors. It features a field-oriented control for BLDC motors, a trajectory planner, and complete position control, eliminating the need for additional drive controller chips. By reducing both the CPU load and system cost, this IP facilitates efficient motor control suitable for multiple applications, including robotics and automation. Seamlessly integrating with standard FPGA development tools, it provides robust support for DC and BLDC motors by allowing autonomous management, making it an ideal choice for reducing development times and costs in motion control systems.
The INAP590T is a cutting-edge digital multi-channel SerDes transmitter specifically crafted for high-speed infotainment applications. Found in the APIX3 suite, this component is built to ensure seamless interactions between HDMI interfaces and APIX2 technology, featuring HDCP support for secure content transmission. This transmitter facilitates a DC-balanced, low latency point-to-point link, perfect for applications requiring robust data transmission like immersive in-car entertainment systems. Capable of handling dual high-definition content streams and supporting resolutions up to 1920x1080 at 30Hz, the INAP590T is ideal for modern display technologies within vehicles. It includes multiple interface options and supports comprehensive full-duplex communication channels, allowing for flexible system design and integration. Furthermore, the robust diagnostic features ensure optimal operation and readily identify potential issues for proactive maintenance. Designed for scalability and forward compatibility, the INAP590T supports extensive bandwidth requirements and is packaged for installation convenience. The integration of Ethernet interfaces, along with GPIO configurations, enables versatile connectivity options to meet diverse automotive needs, ensuring broad applicability across current and next-generation vehicles.
The INAP375R receiver, functioning as a complementary device to the INAP375T transmitter, is an essential component for high-speed serial data communication in car displays and camera systems. This receiver utilizes the APIX2 technology to maintain a DC-balanced, AC-coupled low latency, point-to-point link over shielded twisted pair (STP) cables. Its physical layer can support data transfer rates up to 3 Gbps, offering low electromagnetic interference (EMI) for delicate automotive electronics. Primarily targeting automotive display applications, the INAP375R supports flexible video interfaces that can handle 1 to 2 independent video streams, managing both parallel RGB and LVDS connections with ease. The receiver is engineered with an integrated Media Independent Interface (MII) that interfaces directly with Ethernet MACs, expanding its application potential to full network capabilities. The presence of a full-duplex communication channel ensures uninterrupted, synchronized data, video, and audio transmission across system components. This device is packaged in an LQFP or aQFN format, providing robust design options to accommodate diverse automotive circuit board specifications. It also features advanced diagnostic capabilities to maximize reliability and minimal error rates, making it suitable for critical automotive applications such as infotainment systems, rear-seat entertainment setups, and driver assistance systems.
The VibroSense AI Chip is a cutting-edge solution designed for vibration analysis in Industrial IoT applications. It is based on the Neuromorphic Analog Signal Processor, which preprocesses raw sensor data, significantly reducing the amount of data to be stored and transmitted. This chip is particularly beneficial in predictive maintenance applications, where it helps in the early detection of potential machinery failures by analyzing vibrations generated by industrial equipment. VibroSense excels in overcoming the traditional challenges linked to data processing for condition monitoring systems. By performing data preprocessing at the sensor level, it minimizes data volumes by a thousand times or more, making it feasible to conduct condition monitoring over narrow-bandwidth communications and at lower operational costs. This ensures industrial operations can identify issues like bearing wear or imbalance effectively, ultimately extending equipment life and improving safety. The implementation of VibroSense's neural network architecture enables it to handle complex vibration signals with high accuracy. It supports energy-efficient designs, providing a compelling solution for industries aiming to optimize maintenance operations without increasing their OPEX. Its ease of integration with standard sensor nodes and support for energy harvesting applications further enhances its market appeal.
Badge 2D Graphics offers a high-efficiency graphics solution, designed to support a variety of visual applications through its robust rendering capabilities. This system leverages FPGA technology to deliver fast and efficient 2D graphics processing, tailored for systems requiring stable and reliable graphical outputs. It is particularly suitable for integration into environments where extensive graphical assistance is needed, offering resourceful features for text and video rendering. With its widespread deployment in products surpassing five million units, Badge 2D Graphics demonstrates its reliability and performance in real-world applications, proving essential for industries ranging from automotive to consumer electronics. The system is optimized for use with Xilinx FPGA platforms, ensuring seamless integration with various digital environments. Its design promotes enhanced image quality and reduced rendering times, fostering a smooth user experience in applications that depend on crisp and precise graphical outputs. Through adaptable configuration settings, Badge 2D Graphics supports the needs of different applications by offering customizable output options. Its versatile architecture supports a variety of requirements, making it an indispensable component for systems focused on delivering superior 2D graphics processing.
VeriSyno's Digital Systems and Security Solutions deliver high-performance digital IPs that are crucial in modern electronic design, catering specifically to the growing demand for secure and efficient systems. These solutions encapsulate years of expertise in digital design, offering vital IP cores necessary for building cutting-edge technology products. This suite aims at enhancing security protocols through its innovative designs, providing assurance in data protection and system integrity. Whether used for consumer electronics, industrial applications, or any sensitive data-driven operations, these solutions provide peace of mind and reliability. The company ensures these digital solutions remain adaptable to various architectures, highlighting their commitment to flexibility and client-focused innovation. With ongoing support and extensive customization options, the Digital Systems and Security Solutions offer a resilient foundation for any high-stakes technology ecosystems.
Heimdall is a sophisticated image processing platform by Presto Engineering, specializing in low-resolution vision sensors ideal for motion detection applications. Its design facilitates rapid interpretation of images, making it suitable for various industrial and IoT applications, including object tracking and luminance detection. Heimdall's low image resolution enables a compact silicon footprint, ideal for small-scale IoT devices. The platform can also incorporate energy-harvesting technologies, making it an energy-efficient choice for autonomous ASIC designs used in smart infrastructure and security applications.
The INAP375T transmitter provides a high-speed digital serial link specifically designed for display and camera applications in automotive environments. Utilizing APIX2 technology, it supports DC-balanced, AC-coupled low latency connections over shielded twisted pair (STP) cables, facilitating data transfer with a bandwidth reaching up to 3 Gbps. This transmitter offers a flexible video interface that can accommodate one or two independent video streams, integrating seamlessly with video resolutions such as 1600x600 pixels at refresh rates up to 100Hz. Notably, the device supports comprehensive full-duplex communication channels, reinforcing connectivity for diverse automotive applications. With its sophisticated AShell protocol, the INAP375T ensures error-detection and seamless data transmission. Connectivity extends further through a Media Independent Interface (MII), which allows direct pairing with an Ethernet media access controller, ensuring robust network capabilities. Moreover, the inclusion of a built-in audio path permits synchronous transmission of multiple stereo audio channels, contributing to enhanced multimedia experiences inside vehicles. Featuring a versatile LQFP or aQFN package, the INAP375T is engineered to support backward compatibility with APIX1 technology, offering substantial flexibility across legacy and modern systems. Its sophisticated configuration options, accessed via interfaces like SPI, further bolster its position as an integral component in advanced driver assistance and infotainment systems in the automotive industry.
The logiREF-ACAP-MULTICAM-ISP HDR ISP Framework is designed for multi-camera applications requiring high definition real-time processing using the Versal ACAP platform. This complete HDR ISP video processing framework is capable of handling parallel streams from three UHD automotive video cameras. Xylon has optimized this solution for environments demanding robust image processing, with a focus on enhancing image quality in various lighting conditions—an essential capability for automotive and surveillance applications. The design framework integrates seamlessly with existing systems, utilizing the framework's capabilities to enhance image signal processing pipelines. This innovative framework serves as a powerful tool for developers aiming to harness the latest in image processing technologies, ensuring rapid deployment and optimized performance for high-bandwidth video streams.
The HiSpeedKit-HS platform is a sophisticated tool designed to optimize the verification of high-speed interface subsystems within SoCs. This platform supports the testing of various IP controller solutions, ensuring comprehensive hardware and software verification. By integrating FPGA with the HiSpeedKit-HS, engineers can simulate real-world operations and environments, which is crucial for robust interface verification. Equipped with ARM Cortex A53 components and high-speed interface test chips like DDR 4 PHY and PCIe Gen 4 PHY, the HiSpeedKit-HS is adept at reducing integration risks and speeding up time-to-market. The inclusion of a controller ensures system integrity and performance, making it easier for developers to validate interfaces early on in the design process. The platform stands out for its capacity to facilitate early-stage validation, significantly cutting down on future technical challenges and turnaround time. With an overarching mission to deliver reliable and high-quality IP solutions, this platform provides significant benefits by streamlining the design-in process. By using HiSpeedKit-HS, Faraday continues to affirm its commitment to innovation and quality, offering extensive support throughout the post-silicon debugging phase, thereby laying a solid foundation for successful product development.
VibroSense for Tire Monitoring is an innovative ultra-low-power chip designed to address the gap in current vehicle safety by providing real-time monitoring of tire-road friction. Integrated with standard TPMS systems, this chip enhances ADAS systems by making dynamic road condition feedback possible without relying on indirect and inaccurate friction estimations. By processing data at the sensor level, VibroSense reduces wireless communication overhead, allowing for efficient use of standard battery power or energy harvesting solutions. This chip acts as the missing component in comprehensive vehicle safety, greatly improving the in-tire detection of friction changes, which is critical for maintaining vehicle stability and safety. The precise monitoring of peak friction coefficients allows vehicles equipped with ADAS to respond quicker to road surface changes, contributing to shorter stopping distances and better overall handling. Beyond traditional tire pressure monitoring, VibroSense offers additional functionalities such as tire tread wear analysis and wheel imbalance and loose nut detection. These capabilities make it a vital component in next-generation smart tire solutions, offering vehicle manufacturers a strong competitive advantage in safety and reliability innovations.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!