Find IP Sell IP AI Assistant Chip Talk Chip Videos About Us
Log In

All IPs > Wireline Communication > Optical/Telecom

Optical/Telecom Semiconductor IP: Advanced Solutions for Connectivity

In the realm of wireline communication, Optical and Telecom semiconductor IPs play a pivotal role in ensuring robust connectivity and high-speed data transfer across global networks. As the demand for faster and more reliable communication channels grows, these semiconductor IPs provide the foundational technology for modern telecommunication systems and fiber optic networks.

Optical/Telecom semiconductor IPs are critical for enabling the efficient transmission and reception of data over optical fibers. These IPs include various components such as optical transceivers, modulators, and detectors, which convert electronic signals into optical signals and vice versa. This conversion is essential for high-speed data transmission over long distances, a crucial requirement for both enterprise and consumer telecommunications.

Beyond merely converting signals, Optical/Telecom semiconductor IPs must handle complex signal processing tasks to reduce errors, maximize bandwidth, and optimize data integrity. This includes forward error correction (FEC), signal modulation, and wavelength division multiplexing (WDM) technologies. Such capabilities are vital for sustaining the rapidly increasing data loads due to burgeoning internet usage, video streaming, and cloud computing services.

Products in this category of semiconductor IP range from highly sophisticated optical communication modules to integration-ready telecom processors. They are developed to support a broad array of applications, such as backbone internet infrastructures, 5G networks, data centers, and undersea cable systems. These cutting-edge solutions ensure that network providers can offer seamless and reliable service, empowering users with exceptional connectivity experiences. By leveraging advanced Optical/Telecom semiconductor IPs, industries can continue to innovate and meet the ever-evolving demands of a digitally connected world.

All semiconductor IP

ntLDPC_G98042 ITU-T G.9804.2 compliant LDPC Codec

The ntLDPC_G98042 (17664,14592) IP Core is defined in IEEE 802.3ca-2020, it is used by ITU-T G.9804.2-09.2021 standard document and it is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPCΕ_G98042 encoder IP implements a 256-bit parallel systematic LDPC encoder. The Generator LDPC Matrix is calculated off-line, compressed and stored in ROM. It is partitioned to 12 layers and each layer, when multiplied by the 14592 payload block, produces 256 parity bits. The multiplier architecture may be parameterized before synthesis to generate multiple multiplier instances [1:4,6], in order to effectively process multiple layers in parallel and improve the IP throughput rate. Shortened blocks are supported with granularity of 128-bit boundaries and 384 or 512 parity bits puncturing is also optionally supported. The ntLDPCD_G98042 decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Offset Min-Sum Algorithm (OMS) or Layered Lambda-min Algorithm (LMIN). Selecting between the two algorithms presents a decoding performance vs. system resources utilization trade-off. The OMS algorithm is chosen for this implementation, given the high code rate of the Parity Check Matrix (PCM). The ntLDPCD_G98042 decoder IP implements a 256-bit parallel systematic LDPC layered decoder. Each layer corresponds to Z=256 expanded rows of the original LDPC matrix. Each layer element corresponds to the active ZxZ shifted identity sub-matrices within the layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers’ LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder IP also features a powerful optional syndrome check early termination (ET) criterion, to maintain identical error correction performance, while significantly increasing its throughput rate and/or reducing hardware cost. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. A top level architecture deployment wrapper allows to expand the parallelism degree of the decoder before synthesis, effec-tively implementing a trade-off between utilized area and throughput rate. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components at 128-bit parallel bus interface. This logic is easily portable into any communication protocol, like AXI4 stream IF.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection, Ethernet, Fibre Channel, Optical/Telecom
View Details

EW6181 GPS and GNSS Silicon

The EW6181 is an advanced multi-GNSS silicon solution designed for high sensitivity and precision. This powerful chip supports GPS, Glonass, BeiDou, Galileo, SBAS, and A-GNSS, offering integration flexibility with various applications. Its built-in RF frontend and digital baseband facilitate robust signal processing, controlled by an ARM MCU. The EW6181 integrates essential interfaces for diverse connectivity, matched with DC-DC converters and LDOs to minimize BOM in battery-driven setups. This silicon marries low power demands with strong functional capabilities, thanks to proprietary algorithms that optimize its operation. It’s engineered to deliver exceptional accuracy and sensitivity in both standalone and cloud-related environments, adapting smoothly to connected ecosystems for enhanced efficiency. Its compact silicon footprint further enhances its suitability for applications needing prolonged battery life and reliable positioning. With a focus on Antenna Diversity, the EW6181 shines in dynamic applications like action cameras and smartwatches, ensuring clear signal reception even when devices rapidly rotate. This aspect accentuates the chip's ability to maintain consistent performance across a range of challenging environments, reinforcing its role in the forefront of GNSS technology.

EtherWhere Corporation
All Foundries
7nm
3GPP-5G, AI Processor, ATM / Utopia, Bluetooth, CAN, CAN XL, CAN-FD, Fibre Channel, FlexRay, GPS, JESD 204A / JESD 204B, OBSAI, Optical/Telecom, Photonics, RF Modules, USB, W-CDMA
View Details

ntVIT Configurable Viterbi FEC System

Convolutional FEC codes are very popular because of their powerful error correction capability and are especially suited for correcting random errors. The most effective decoding method for these codes is the soft decision Viterbi algorithm. ntVIT core is a high performance, fully configurable convolutional FEC core, comprised of a 1/N convolutional encoder, a variable code rate puncturer/depuncturer and a soft input Viterbi decoder. Depending on the application, the core can be configured for specific code parameters requirements. The highly configurable architecture makes it ideal for a wide range of applications. The convolutional encoder maps 1 input bit to N encoded bits, to generate a rate 1/N encoded bitstream. A puncturer can be optionally used to derive higher code rates from the 1/N mother code rate. On the encoder side, the puncturer deletes certain number of bits in the encoded data stream according to a user defined puncturing pattern which indicates the deleting bit positions. On the decoder side, the depuncturer inserts a-priori-known data at the positions and flags to the Viterbi decoder these bits positions as erasures. The Viterbi decoder uses a maximum-likelihood detection recursive process to cor-rect errors in the data stream. The Viterbi input data stream can be composed of hard or soft bits. Soft decision achieves a 2 to 3dB in-crease in coding gain over hard-decision decoding. Data can be received continuously or with gaps.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.11, 802.16 / WiMAX, Bluetooth, Error Correction/Detection, Optical/Telecom
View Details

ntLDPC_SDAOCT SDA OCT Standard 3.1.0 (5G-NR) compliant LDPC Codec

ntLDPC_SDAOCT IP implements a 5G-NR Base Graph 1 systematic Encoder/Decoder based on Quasi-Cyclic LDPC Codes (QC-LDPC), with lifting size Zc=384 and Information Block Size 8448 bits. The implementation is based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that it offers high throughput at low implementation complexity. The ntLDPCE_SDAOCT Encoder IP implements a systematic LDPC Zc=384 encoder. Input and Output may be selected to be 32-bit or 128-bits per clock cycle prior to synthesis, while internal operations are 384-bits parallel per clock cycle. Depending on code rate, the respective amount of parity bits are generated and the first 2xZc=768 payload bits are discarded. There are 5 code rate modes of operation available (8448,8448)-bypass, (9984,8448)-0.8462, (11136,8448)-0.7586, (12672,8448)-0.6667 and (16896,8448)-0.5. The ntLDPCD_SDAOCT Base Graph Decoder IP may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Min-Sum Algorithm (MS) or Layered Lambda-min Algorithm (LMIN). Variations of Layered MS available are Offset Min-Sum (OMS), Normalized Min-Sum (NMS), and Normalized Offset Min-Sum (NOMS). Selecting between these algorithms presents a decoding performance vs. system resources utilization trade-off. The ntLDPCD_SDAOCT decoder IP implements a Zc=384 parallel systematic LDPC layered decoder. Each layer corresponds to Zc=384 expanded rows of the original LDPC matrix. Each layer element corresponds to the active ZcxZc shifted identity submatrices within the layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder IP also features a powerful optional early termination (ET) criterion, to maintain practically equivalent error correction performance, while significantly increasing its throughput rate and/or reducing hardware cost. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI4 stream IF.

Noesis Technologies P.C.
All Foundries
All Process Nodes
3GPP-5G, Error Correction/Detection, Optical/Telecom
View Details

High-Speed SerDes for Chiplets

High-Speed SerDes for Chiplets is engineered to provide exceptional interconnect solutions tailored for chiplet architectures. This product offers ultra-low power consumption while maintaining high data transfer rates, essential for modern multi-die systems. By facilitating rapid communication between chiplets, it enhances overall system efficiency and performance. This SerDes solution is optimized for integration with a range of tech nodes, ensuring compatibility with various semiconductor manufacturing processes. Its design is focused on providing robust data integrity and reducing latency, which are crucial for efficient system operation in complex, integrated circuits. High-Speed SerDes addresses the growing demand for advanced interconnect solutions in chiplet architectures, making it an indispensable tool for developing next-generation semiconductor devices. Its ability to support high data throughput while keeping power use minimal makes it a standout choice in high-performance design environments.

EXTOLL GmbH
GLOBALFOUNDRIES, Samsung, TSMC, UMC
22nm, 28nm
AMBA AHB / APB/ AXI, D2D, Ethernet, MIL-STD-1553, Network on Chip, Optical/Telecom
View Details

TSN Switch for Automotive Ethernet

The TSN Switch for Automotive Ethernet is designed to address the needs of modern automotive networks by offering time-sensitive networking capabilities. This switch is tailored to manage Ethernet-based communication in vehicles, ensuring low-latency and reliable data transmission. It supports complex automotive network architectures, making it ideal for real-time communication requirements in vehicles. With its robust time-sensitive networking features, this switch is capable of guaranteeing data delivery within tight time constraints, a critical requirement for advanced driver assistance systems (ADAS) and autonomous driving. It integrates seamlessly within the automotive Ethernet ecosystem, providing scalability and integration flexibility. The switch is engineered to support the industry's move towards centralized vehicle networking, improving data throughput and reducing cabling complexity. The switch’s architecture supports multiple ports, allowing for the connection of various vehicle subsystems within a unified network framework. Implementing this technology can drastically improve the efficiency and reliability of in-vehicle communication systems. The TSN capabilities optimize network traffic management, ensure the prioritization of time-critical messages, and enhance the overall stability and predictability of automotive data flows.

Fraunhofer Institute for Photonic Microsystems (IPMS)
AMBA AHB / APB/ AXI, ATM / Utopia, CXL, Ethernet, LIN, Optical/Telecom, RapidIO, Safe Ethernet, SDRAM Controller, USB, V-by-One
View Details

Network Protocol Accelerator Platform

The Network Protocol Accelerator Platform (NPAP) is engineered to accelerate network protocol processing and offload tasks at speeds reaching up to 100 Gbps when implemented on FPGAs, and beyond in ASICs. This platform offers patented and patent-pending technologies that provide significant performance boosts, aiding in efficient network management. With its support for multiple protocols like TCP, UDP, and IP, it meets the demands of modern networking environments effectively, ensuring low latency and high throughput solutions for critical infrastructure. NPAP facilitates the construction of function accelerator cards (FACs) that support 10/25/50/100G speeds, effectively handling intense data workloads. The stunning capabilities of NPAP make it an indispensable tool for businesses needing to process vast amounts of data with precision and speed, thereby greatly enhancing network operations. Moreover, the NPAP emphasizes flexibility by allowing integration with a variety of network setups. Its capability to streamline data transfer with minimal delay supports modern computational demands, paving the way for optimized digital communication in diverse industries.

Missing Link Electronics
AMBA AHB / APB/ AXI, Cell / Packet, Ethernet, MIL-STD-1553, Multiprocessor / DSP, Optical/Telecom, RapidIO, Safe Ethernet, SATA, USB, V-by-One
View Details

LightningBlu - High-Speed Rail Connectivity

LightningBlu is a state-of-the-art multi-gigabit connectivity solution for high-speed rail networks, delivering continuous high-speed data transfer between trackside and train systems. This innovative solution works within the mmWave spectrum of 57-71 GHz and is certified for long-term, low-maintenance deployment. It seamlessly integrates with existing trackside networks to provide a stable, high-capacity communication bridge essential for internet access, entertainment, and real-time information services aboard high-speed trains. The LightningBlu system includes robust trackside nodes and compact train-top nodes designed for seamless installation, significantly enhancing operational efficiencies and passenger experience by providing internet speeds superior to traditional mobile broadband services. With aggregate throughputs reaching around 3 Gbps, LightningBlu sets the standard for rail communications by supporting speeds at which data demands are met with ease. Crucially, LightningBlu is a key component in transforming the railway telecommunications landscape, offering upgraded technology that enables uninterrupted and enhanced passenger digital services even in the busiest railways across the UK and USA. Through its advanced mmWave technology, it ensures that the connectivity needs of the modern commuter are met consistently and effectively, paving the way for a new era in transit communication.

Blu Wireless Technology Ltd.
GLOBALFOUNDRIES, TSMC
28nm, 180nm
3GPP-5G, 3GPP-LTE, 802.16 / WiMAX, Bluetooth, CAN, Digital Video Broadcast, Ethernet, Gen-Z, I2C, Optical/Telecom, RF Modules, UWB, V-by-One, W-CDMA, Wireless Processor
View Details

ntRSD Configurable Reed Solomon Decoder

ntRSD core implements a time-domain Reed-Solomon decoding algorithm. The core is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSD core supports erasure decoding thus doubling its error correction capability. The core also supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.11, 802.16 / WiMAX, Bluetooth, Digital Video Broadcast, Error Correction/Detection, Ethernet, Optical/Telecom
View Details

RWM6050 Baseband Modem

The RWM6050 Baseband Modem is an innovative component of Blu Wireless's mmWave technology portfolio, architected to support high-bandwidth, high-capacity data communications. Designed in collaboration with industry leaders Renesas, this modem unit stands out for its efficiency and versatility, effectively marrying physical modem layers with advanced processing capabilities. The RWM6050 modem is instrumental in providing seamless data transmission for access and backhaul networks. Built to accommodate varying channelisation modes, the RWM6050 supports deep levels of customisation for different bandwidth requirements and transmission distances. It handles multi-gigabit throughput, which makes it ideal for expanding connectivity in urban or industrial areas with dense infrastructure requirements. From smart cities to complex transport systems, this baseband modem scales effectively to meet demanding data needs. Equipped with dual modems and integrated mixed-signal front-end capabilities, the RWM6050 offers a flexible solution for evolving communication infrastructures. Its design ensures optimization for real-time digital signal processing, beamforming, and adaptable connectivity management. The RWM6050 is a key enabler in unlocking the full potential of mmWave technology in a variety of settings, furthering connectivity innovations.

Blu Wireless Technology Ltd.
LFoundry, Renesas
55nm, 130nm
17 Categories
View Details

ntRSE Configurable Reed Solomon Encoder

ntRSE core implements the Reed Solomon encoding algorithm and is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSE core supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.16 / WiMAX, Bluetooth, Digital Video Broadcast, Error Correction/Detection, Ethernet, Optical/Telecom
View Details

ArrayNav Adaptive GNSS Solution

ArrayNav is at the forefront of GNSS enhancements, utilizing multiple antennas to improve the sensitivity and performance of navigation systems. This sophisticated technology significantly boosts GNSS accuracy in challenging environments such as urban canyons. By leveraging up to four antennas, ArrayNav mitigates multipath issues and strengthens signal reception, dramatically enhancing performance. The heart of ArrayNav's innovation lies in its ability to filter out unwanted signals like interference or jamming attempts, ensuring the precision of GNSS operations. As each antenna adds unique benefits, this system ensures reliable navigation across diverse scenarios, whether in open areas or densely constructed urban landscapes. ArrayNav's technology is pivotal in the automotive sector, especially within advanced driver-assistance systems (ADAS). By providing sharper, more reliable positioning data, it contributes to improved safety and efficiency in vehicular systems, showcasing its indispensable role in modern navigation.

EtherWhere Corporation
3GPP-5G, Arbiter, Bluetooth, CAN, CAN-FD, FlexRay, GPS, IEEE 1394, Mobile DDR Controller, NFC, Optical/Telecom, Photonics, Receiver/Transmitter, RF Modules, Security Subsystems, UWB, W-CDMA
View Details

ntRSD_UF Ultra Fast Configurable Reed Solomon Decoder

ntRSD_UF core implements a time-domain Reed-Solomon decoding algorithm. The core is parameterized in terms of bits per symbol, maximum codeword length, maximum number of parity symbols as well as I/O data width, internal datapath and decoding engines parallelism. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSD_UF core supports erasure decoding thus doubling its error correction capability. The core also supports continuous or burst decoding. The core is designed and optimized for applications that need very high throughput data rates. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection, Ethernet, Optical/Telecom
View Details

eSi-Comms

The eSi-Comms suite from EnSilica stands as a highly parametizable set of communications IP, integral for developing devices in the RF and communications sectors. This suite focuses on enhancing wireless performance and maintaining effective communication channels across various standards. The modular design ensures adaptability to multiple air interface standards such as Wi-Fi, LTE, and others, emphasizing flexibility and customizability.\n\nThis communication IP suite includes robust components optimized for low-power operation while ensuring high data throughput. These capabilities are particularly advantageous in designing devices where energy efficiency is as critical as communication reliability, such as in wearables and healthcare devices.\n\nMoreover, eSi-Comms integrates seamlessly into broader system architectures, offering a balanced approach between performance and resource utilization. Thus, it plays a pivotal role in enabling state-of-the-art wireless and RF solutions, whether for next-gen industrial applications or advanced consumer electronics.

EnSilica
20 Categories
View Details

LDPC Decoder for 5G NR

The 5G NR LDPC Decoder resource by Mobiveil supports advanced LDPC decoding capabilities optimized for modern telecommunication needs. Employing the Min-Sum LDPC decoding algorithm, it allows for programmable bit widths and features early exit iteration capabilities. Support for Hybrid Automatic Repeat Request (HARQ) ensures robustness by accumulating computed LLR values, increasing its efficacy in error correction scenarios.

Mobiveil, Inc.
3GPP-5G, ATM / Utopia, Error Correction/Detection, Ethernet, Optical/Telecom, SDIO Controller, Temperature Sensor
View Details

ntLDPC_8023CA IEEE 802.3ca-2020 compliant LDPC Codec

The ntLDPC_8023CA (17664,14592) IP Core is defined in IEEE 802.3ca-2020 standard document and it is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPCE_8023CA encoder IP implements a 256-bit parallel systematic LDPC encoder. The Generator LDPC Matrix is calculated off-line, compressed and stored in ROM. It is partitioned to 12 layers and each layer when multiplied by the 14592 payload block pro-duces 256 parity bits. The multiplier architecture may be parameterized before synthesis to generate multiple multiplier instances [1 to 6], in order to effectively process multiple layers in parallel and improve the IP throughput rate. Shortened blocks are supported with granularity of 128-bit boundaries and 384 or 512 parity bits puncturing is also optionally supported. The ntLDPCD_8023CA decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Offset Min-Sum Algorithm (OMS) or Layered Lambda-min Algorithm (LMIN). Selecting between the two algorithms presents a decoding performance vs system resources utilization trade-off. The OMS algorithm is chosen for this implementation, given the high code rate of the Parity Check Matrix (PCM). The ntLDPCD_8023CA decoder IP implements a 256-bit parallel systematic LDPC layered decoder. Each layer corresponds to Z=256 expanded rows of the original LDPC matrix. Each layer element corresponds to the active ZxZ shifted identity sub-matrices within the layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder IP also features a powerful optional early termination (ET) criterion, to maintain practically equivalent error correction performance, while significantly increasing its throughput rate and/or reducing hardware cost. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI4 stream IF.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection, Ethernet, Optical/Telecom
View Details

PhantomBlu - Tactical Communications

PhantomBlu is a sophisticated mmWave communication solution specifically designed for the defense sector, empowering military operations with robust, high-performance connectivity. Leveraging advanced mmWave technology, it supports tactical connections between land, sea, and air platforms, enabling seamless IP networking over a secure, anti-jam resistant mesh network. PhantomBlu’s design is optimized for rapid deployment and versatile use across various challenging military and defense environments. The PhantomBlu system offers unprecedented connectivity and integration capabilities, supporting high-bandwidth, low-latency communications essential for defense operations. It features LPI (Low Probability of Interception) and LPD (Low Probability of Detection), ensuring stealth and operational security. Its adaptive networking solutions significantly enhance situational awareness and interoperability amongst varied defense assets, assuring seamless transfer of C4ISR data. Whether deployed across large terrains or in mobile units, PhantomBlu's resilience and scalability ensure that defense teams operate with confidence. Its advanced capabilities are critical in mitigating risks and enhancing strategic emission, making it an invaluable asset for modern military communications needs.

Blu Wireless Technology Ltd.
Intel Foundry, Samsung
28nm, 65nm
24 Categories
View Details

ATSC 8-VSB Modulator

Designed for maximum compatibility and efficiency, the ATSC 8-VSB Modulator serves both professional TV network applications and custom point-to-point radio links. Its comprehensive compliance with ATSC A/53 8-VSB standards guarantees reliable performance across multiple broadcast scenarios. The modulator's versatile design supports varied operational environments, making it indispensable for broadcasters who require versatile and robust transmission solutions. Its emphasis on delivering flawless signal integrity ensures top-notch broadcast quality for diverse applications.

Commsonic Ltd.
Camera Interface, CSC, DVB, H.266, Optical/Telecom, RF Modules
View Details

Ceva-BX2 - Baseband processor

**Ceva-BX2 baseband processor IP** handles both signal-processing and control workloads with up to 16 GMACs per second performance and high-level-language programming. It supports a range of integer and floating-point data types for a wide range of baseband applications like 5G PHY control, and exploits a high degree of parallelism, but with remarkably compact code size. Optimized high-speed interfaces expedite connection to other Ceva cores or to accelerators. The Ceva-BX2 combines the capabilities of signal processing and control-code execution into a single, compact DSP. Computational speed comes from quad-32×32/octal-16×16 MACs with added support for 16×8 and 8×8 MAC operations, organized into two parallel compute engines within an 11-stage pipeline. Each compute engine can add optional half- and single-precision IEEE floating-point units. These resources are directed by a five-way VLIW instruction set architecture with optimizations for single-instruction-multiple-data (SIMD) operation, including a hardware loop buffer for kernel execution. Efficient execution of control code is aided by dynamic branch prediction and a branch target cache. On signal-processing tasks the Ceva-BX2 can reach up to 16 GMACs per second, and on control workloads it can achieve up to 5.46 CoreMark/MHz. The hardware design is optimized for speed, achieving 2 GHz operation implemented in a TSMC 7nm process node with only common standard cells and memory compilers. [**Learn more about Ceva-BX2>**](https://www.ceva-ip.com/product/ceva-bx2/?utm_source=silicon_hub&utm_medium=ip_listing&utm_campaign=ceva_bx2_page)

Ceva, Inc.
Optical/Telecom
View Details

ISDB-T Modulator

The ISDB-T Modulator delivers robust capabilities for both professional TV networks and custom point-to-point radio links. This modulator core is fully compliant with ARIB STD-B31 and ABNT NBR 15601, ensuring compatibility across a broad range of broadcasting applications. Its adaptable framework makes it suitable for diverse broadcast needs, facilitating the efficient transmission of digital television signals. Through this, broadcasters can achieve a more reliable and consistent service quality across different market segments.

Commsonic Ltd.
Camera Interface, CSC, DVB, H.266, Optical/Telecom, RF Modules
View Details

DVB-T2 Modulator

The DVB-T2 Modulator stands out with its powerful FPGA or ASIC implementation, designed to perform efficient modulation as per the DVB-T2 ETSI EN302 755 standards. This comprehensive solution encompasses all necessary functions to facilitate high-performance terrestrial broadcasts. The modulator is crafted for use in a range of broadcast networks, offering flexibility and adaptability in its application. This makes it a go-to solution for broadcasters aiming to leverage the power of DVB-T2 technology to deliver superior terrestrial broadcast services.

Commsonic Ltd.
Camera Interface, CSC, DVB, H.266, Optical/Telecom, RF Modules
View Details

12G-SDI Playback and Capture System

Korusys presents the 12G-SDI Playback and Capture System, engineered for high-resolution video operations. It supports 4K UHD playback and capture with its quad bi-directional 3G-SDI capabilities. Featuring test pattern generation for comprehensive system diagnostics, this solution is ideal for professional environments requiring reliable high-definition video processing. Included as part of a package deal with the High Performance FPGA PCIe Accelerator Card, it offers seamless integration into existing infrastructures for enhanced media capabilities.

Korusys Ltd
ATM / Utopia, Error Correction/Detection, Ethernet, LCD Controller, Optical/Telecom, SATA
View Details

Multi-channel ATSC 8-VSB Modulator

The Multi-channel ATSC 8-VSB Modulator enhances broadcasting flexibility by supporting multiple channels within ATSC A/53 8-VSB standards. Tailored to meet professional TV network and custom point-to-point radio link needs, this modulator core facilitates complex broadcast operations. It enables seamless integration and high-quality signal transmission across varied operational environments. By efficiently managing multiple channels, it empowers broadcasters to optimize signal delivery and enhance their overall transmission capabilities.

Commsonic Ltd.
Camera Interface, CSC, DVB, H.266, Optical/Telecom, RF Modules
View Details

ntLDPC_Ghn ITU-T G.9960 compliant LDPC Codec

The ntLDPC_Ghn IP Core is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPCD_Ghn decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Offset Min-Sum Algorithm or Layered Lambda-min Algorithm. Selecting between the two algorithms presents a decoding performance .vs. system resources utilization trade-off. The core is highly reconfigurable and fully compliant to the ITU-T G.9960 G.hn standard. The ntLDPCE_Ghn encoder IP implements a 360-bit parallel systematic LDPC encoder. An off-line profiling Matlab script processes the original matrices and produces a set of constants that are associated with the matrix and hardcoded in the RTL encoder. The ntLDPCD_Ghn decoder IP implements a 360-LLR parallel systematic LDPC layered decoder. A separate off-line profiling Matlab script is used to profile the layered matrices and resolve any possible memory access conflicts. Each layer corresponds to Z=[14, 80, 360, 60, 270, 48 or 216] expanded rows of the original LDPC matrix, depending on the mode selected expansion factor. Each layer element corresponds to the active ZxZ shifted identity sub-matrices, within a layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been executed. The decoder also IP features a powerful optional early termination (ET) criterion, to maintain practically the same error correction performance, while significantly increasing its throughput rate. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control handshaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Error Correction/Detection, Optical/Telecom
View Details

Time Sensitive Network IP Core

The Time Sensitive Network (TSN) IP Core by LeWiz Communications is designed to deliver precise, fault-tolerant networking capabilities for mission-critical and space applications. It offers scalability from 1Gbps to 10Gbps, featuring advanced functions such as Babbling Protection and Anti-Masquerading for secure and reliable communication. Utilizing an AXI standard interface, this IP core ensures an easy and seamless integration process with existing systems, enhancing both its usability and functionality. LeWiz has tailored this TSN IP Core to cater to environments where consistent network delivery and timing precision are vital. Its scalability makes it an ideal solution for high-stakes environments within aerospace and defense sectors, where maintaining regular communication and data integrity is imperative. Additionally, the IP core supports various fault-tolerant measures, reducing the potential for network failures and ensuring continuous operation. Designed to comply with stringent industry standards, this IP core can be configured to support a range of virtual links or data streams, aligning with specific customer requirements. Its comprehensive support for time-sensitive applications positions it as a powerful tool in the development of sophisticated networking solutions, providing enhanced reliability and security across complex systems.

LeWiz Communications, Inc.
Ethernet, IEEE1588, Optical/Telecom
View Details

LDACS-1 & LDACS-2 Physical Layer

The LDACS-1 & LDACS-2 physical layer is developed for integration into communication systems requiring secure and reliable data transfer. Originally modeled in MATLAB, this physical layer design can be transitioned to Verilog to suit hardware implementation demands. As it is part of the L-band Digital Aeronautical Communication System, it serves crucial roles in ensuring efficient communication for aeronautical services, providing support for future air traffic management systems. This IP fosters innovation in radio-based communication by enhancing the range and efficiency of data transmission. Its design ensures low latency and optimized throughput, which is essential for the continuous operation of complex aeronautical communication networks. Affording great flexibility, it can be adapted to various aeronautical scenarios and integrated seamlessly with existing systems to extend their capabilities. Additionally, this physical layer IP supports a dual mode, offering both LDACS-1 and LDACS-2 compatibility, further broadening its applicability. This ensures that it meets diverse communication standards, standing as a versatile solution for future-oriented aviation communication infrastructure developments.

Innowitech Solutions
3GPP-5G, Cell / Packet, Error Correction/Detection, Ethernet, Modulation/Demodulation, Network on Chip, Optical/Telecom, W-CDMA
View Details

5G ORAN Base Station

The 5G ORAN Base Station is set to redefine the landscape of mobile networking, vastly enhancing wireless data capacity and paving the way for innovative wireless applications. This product is designed to augment connectivity in both urban and rural settings, offering robust data handling capabilities and superior performance. By incorporating open RAN technology, it facilitates interoperability and vendor-neutral platforms, promoting innovation and flexibility. This cutting-edge base station supports a plethora of applications, allowing service providers to deliver high-speed 5G connectivity tailored to specific client needs. Its advanced architecture ensures seamless integration with existing network infrastructure, streamlining the adoption of next-gen technologies. Furthermore, the base station boasts energy-efficient design principles, presenting a sustainable option for expanding mobile broadband offerings. With its modular design, the 5G ORAN Base Station is versatile and scalable, suiting a range of deployment scenarios, from dense urban centers to remote and underserved areas. The inclusion of open interface standards accelerates innovation and reduces deployment costs, offering an optimal solution for service providers aiming to maximize their 5G network investments.

Faststream Technologies
12 Categories
View Details

Multi-Channel Silicon Photonic Chipset for Data Transmission

Rockley Photonics' Multi-Channel Silicon Photonic Chipset is engineered for high-speed data transmission applications. The chipset integrates hybrid III-V DFB lasers and electro-absorption modulators into a silicon photonics framework, allowing it to support 4×106Gb/s 400 GBASE-DR4 data rates over multiple channels. This highly efficient setup delivers significant optical modulation amplitude (OMA) and maintains a low TDECQ penalty, fully complying with IEEE standards. This chipset is particularly suited for optical communications, providing the robustness and speed necessary for demanding data centers and telecommunication infrastructures.

Rockley Photonics
AMBA AHB / APB/ AXI, MIPI, Modulation/Demodulation, Optical/Telecom, Photonics, RF Modules
View Details

QAM Demodulator

The QAM Demodulator from IPrium is a crucial component for modern communication systems, known for its ability to precisely demodulate quadrature amplitude modulated signals. This tool is pivotal for applications requiring the efficient reception and processing of complex data signals. QAM Demodulators decode the amplitude and phase information of signals, providing critical functionalities in systems that demand high bandwidth and reliable data integrity. These demodulators are extensively used in digital television, broadband communications, and data broadcasting, reflecting their versatility in handling high-speed data streams. By utilizing advanced algorithms, IPrium's QAM Demodulator achieves enhanced performance, ensuring minimal signal distortion and high data accuracy. It is designed to cope with varying channel conditions, making it a staple in both commercial and high-end communication systems worldwide.

IPrium LLC
Error Correction/Detection, Ethernet, Modulation/Demodulation, Optical/Telecom, Receiver/Transmitter, UWB
View Details

DVB-S2X LDPC Decoder

The DVB-S2X LDPC Decoder from TurboConcept targets satellite communication systems, offering improved error correction for high-throughput data transmission. It complies with the DVB-S2X standard, making it suitable for both broadcast and broadband applications. By incorporating advanced LDPC coding techniques, this decoder enhances signal reliability, reducing the error rate significantly even in challenging atmospheric conditions. This core is perfect for those looking to optimize satellite link performance while maintaining efficient bandwidth utilization. Category IDs: [305, 306]

TurboConcept
Modulation/Demodulation, Optical/Telecom
View Details

AV145 Zynq Ultrascale+ RFSoC

The AV145 is part of a comprehensive suite of high-speed data conversion solutions based on the VPX standard. It features AMD's Zynq Ultrascale+ RFSoC, providing eight 14-bit ADC and DAC channels perfectly aligned for embedded processing in electronic warfare and wideband radar applications. The board supports various communication protocols and stands out with its flexible external reference options, making it highly adaptable for different operational requirements. With powerful processing capabilities and integrated DDR4-2400 SDRAM, it stands as a reliable choice for intensive signal processing tasks.

Reflex CES
A/D Converter, Optical/Telecom
View Details

P19800B: 4GHz RF Spectrometer

The P19800B is a 4GHz RF spectrometer ASIC that represents the second generation of advanced spectrometric analysis. This ASIC is built to facilitate precise RF measurement and analysis, making it an ideal choice for applications where frequency accuracy and signal integrity are paramount. Designed with advanced CMOS and SiGe technology, it promises remarkable performance under various demanding conditions. One of the standout features of the P19800B is its ability to work in complex RF environments with high selectivity and sensitivity. This makes it a valuable tool in fields like telecommunications, remote sensing, and advanced research where accurate RF detection is crucial. Built to handle expansive bandwidths, this spectrometer ASIC aids in maintaining signal clarity and reduces noise interference, enhancing overall operational efficiency. With a focus on delivering superior performance at reduced power consumption, the P19800B accommodates varying design needs. Its robust architecture ensures long-term reliability and adaptability, catering to evolving technological demands. Whether integrated into larger systems or used in standalone roles, this spectrometer ASIC is a versatile component that keeps pace with the fast-changing landscape of advanced RF technology.

Pacific MicroCHIP Corp.
Tower
65nm
Optical/Telecom, RF Modules
View Details

AV143 Virtex Ultrascale+

The AV143 provides a robust platform for high-speed data conversion and signal processing solutions. Built on AMD Virtex Ultrascale+ architecture, it combines advanced ADC and DAC capabilities with high processing power, making it ideally suited for electronic warfare and wideband radar applications. The AV143 supports various communication standards, offering adaptability and flexibility for diverse uses. It has a full suite of software drivers for seamless integration and system management, effectively facilitating data handling and operations across critical applications.

Reflex CES
A/D Converter, Optical/Telecom
View Details

P19800C: 4GHz RF Spectrometer

An improvement upon its predecessor, the P19800C continues the legacy of precise 4GHz RF analysis by providing enhanced features for even more rigorous applications. Harnessing cutting-edge CMOS technology, this third-generation spectrometer offers a high balance of performance and efficiency, catering to sophisticated RF analysis tasks across varied settings. With an expanded feature set, the P19800C addresses the needs of modern telecommunication systems and remote diagnostics. It boasts an improved noise floor and signal resolution, allowing operators to monitor and control spectral integrity with unmatched precision. The device's versatility allows it to perform in a diverse array of environments, meeting the ever-evolving demands of the RF spectrum. Designed for low power consumption while maintaining high output, the P19800C presents a balance that suits both large and compact systems. Its architecture supports high-level integration with existing platforms, facilitating easy adoption in ongoing projects. As the spectrum's analytical demands grow, the P19800C positions itself as a critical tool in achieving superior RF management and analysis.

Pacific MicroCHIP Corp.
Tower
65nm
Optical/Telecom, RF Modules
View Details

P23801A: 10GHz Dual-channel Spectrometer

The P23801A is an advanced dual-channel spectrometer ASIC renowned for its capability to operate at 10GHz with polarimetric analysis features. This device is engineered specifically for environments demanding high-frequency RF measurements and nuanced spectral analysis, offering functionalities that support complex diagnostics and communication strategies. Featuring dual-channel processing, the P23801A significantly enhances spectral analysis by handling multiple inputs with precision and speed. It is particularly effective in polarimetric contexts, which demand detailed distinction between orthogonal signal components. This capability is invaluable in applications such as advanced radio astronomy, remote sensing, and high-frequency broadband communications. Capable of integrating seamlessly into existing analytic frameworks, the P23801A’s innovative design enhances signal clarity and bandwidth utilization. Its architecture facilitates a comprehensive analysis of both spectral and polarimetric data, thus providing users with a thorough understanding of the RF environment. Such versatility ensures that the P23801A remains a staple for state-of-the-art spectrum analytics.

Pacific MicroCHIP Corp.
Tower
65nm
Optical/Telecom, RF Modules
View Details

AV150 Virtex UltraScale+

The AV150 board is engineered for high-speed data conversion and signal processing, adhering to the VPX standard. Equipped with AMD Virtex UltraScale+ FPGA, it combines powerful ADC and DAC capabilities with diverse communication protocol support, including PCIe and Gigabit Ethernet. The AV150 is designed for applications needing extensive I/O and high transceiver bandwidth, maximizing data throughput for real-time processing demands. The platform's flexibility and high integration make it suitable for phased-array radar systems and electronic warfare applications, where adaptability and reconfiguration are key.

Reflex CES
A/D Converter, Optical/Telecom, Sensor
View Details

AV153 Direct RF

The AV153 is a leader in ultra-wideband radar and electronic warfare systems. Built on the VITA47 VPX standard, it features cutting-edge Direct-RF technology for seamless integration of FPGA processing and RF operations. With 8x 10-bit ADC and DAC and supporting up to 20 GHz analog bandwidth, the AV153 stands out for applications necessitating high-performance processing and precise RF capabilities. Its comprehensive SOSA compliance ensures smooth interoperability and system integration, making it a favored choice for developers focusing on next-gen radar and telecom solutions.

Reflex CES
A/D Converter, Optical/Telecom
View Details

AV155 Versal RF

The AV155 board is a high-performance component in ultra wideband radar, ECM, and SIGINT systems. This 3U VPX platform, powered by the AMD Versal RF VR1652 or VR1952, offers exceptional data processing capabilities with up to 8 channels of 32 Gsps 14-bit ADC and 8 channels of 16 Gsps 14-bit DAC. Designed according to the SOSA standard, it ensures seamless interoperability across radar, electronic warfare, and communication systems. The board features robust DDR5 memory and conduction-cooled design, making it suitable for deployment in harsh environments while ensuring precise timing and data operations.

Reflex CES
A/D Converter, Coder/Decoder, Optical/Telecom, Sensor
View Details

P19810B: Correlation Radiometer ASIC

The P19810B is a specialized correlation radiometer ASIC capable of handling signals up to 10GHz, with a focus on dual-sideband, dual-input operations across 64 channels. This ASIC delivers remarkable performance in signal detection and correlation, pivotal for fields like metrology, atmospheric science, and telecommunications. This correlation radiometer is designed to offer high sensitivity and accuracy, crucial for capturing the subtle nuances in RF signal environments required for precise measurements. The dual-sideband technology allows for greater bandwidth utilization within limited spectral resources, enhancing the effectivity of signal differentiation and analysis. Equipped with robust processing abilities, the P19810B supports complex applications that necessitate detailed correlation of signal inputs. Its multifaceted approach provides the flexibility required in modern analytic tools, ensuring that varying data types are addressed with precision. The P19810B stands as a cornerstone in environments where exactitude and robust analysis are mandatory, integrating seamlessly into larger systems to enhance performance efficiencies.

Pacific MicroCHIP Corp.
Tower
65nm
Optical/Telecom, RF Modules
View Details
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt