All IPs > Multimedia
In the rapidly evolving world of semiconductors, multimedia semiconductor IPs play a crucial role in enabling and enhancing digital media experiences across various electronic devices. This category encompasses a broad range of intellectual properties tailored for multimedia processing, from audio and video codecs to graphical interfaces, essential for consumer electronics, mobile devices, broadcasting equipment, and more. As technology advances, so too do the demands for higher performance, better quality, and increased efficiency in multimedia signal processing.
This category is home to subcategories that feature cutting-edge technologies and industry standards in multimedia processing. 2D and 3D rendering IPs lead the visual innovation charge, offering essential tools for developing immersive user interfaces and gaming experiences. Advanced audio interfaces, including ADPCM and WMA IPs, provide high-quality sound reproduction and compression, essential for both professional audio systems and consumer devices.
One of the highlights of the multimedia IP category is video compression technology. Standards like H.264, H.265, and the new H.266 are crucial for streaming services, broadcasting, and digital video recorders, offering solutions that reduce data rates while maintaining video quality. Image processing IPs including JPEG, JPEG 2000, and MPEG standards, ensure efficient image storage and retrieval, vital for digital cameras and web applications.
Additionally, interface IPs such as HDMI, Camera Interface, and MHL provide seamless connectivity, enabling efficient data transfer between devices. With innovations such as AV1 for open-source video coding, and emerging technologies like TICO and MPEG 5 LCEVC, our catalog covers both established and avant-garde solutions for multimedia applications. These semiconductor IPs empower developers and manufacturers to deliver next-generation multimedia experiences, ensuring devices meet the modern consumer's expectations for quality and performance.
The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.
Axelera AI's Metis AIPU PCIe AI Accelerator Card is engineered to deliver top-tier inference performance in AI tasks aimed at heavy computational loads. This PCIe card is designed with the industry’s highest standards, offering exceptional processing power packaged onto a versatile PCIe form factor, ideal for integration into various computing systems including workstations and servers.<br><br>Equipped with a quad-core Metis AI Processing Unit (AIPU), the card delivers unmatched capabilities for handling complex AI models and extensive data streams. It efficiently processes multiple camera inputs and supports independent parallel neural network operations, making it indispensable for dynamic fields such as industrial automation, surveillance, and high-performance computing.<br><br>The card's performance is significantly enhanced by the Voyager SDK, which facilitates a seamless AI model deployment experience, allowing developers to focus on model logic and innovation. It offers extensive compatibility with mainstream AI frameworks, ensuring flexibility and ease of integration across diverse use cases. With a power-efficient design, this PCIe AI Accelerator Card bridges the gap between traditional GPU solutions and today's advanced AI demands.
Overview: CMOS Image Sensors (CIS) often suffer from base noise, such as Additive White Gaussian Noise (AWGN), which deteriorates image quality in low-light environments. Traditional noise reduction methods include mask filters for still images and temporal noise data accumulation for video streams. However, these methods can lead to ghosting artifacts in sequential images due to inconsistent signal processing. To address this, this IP offers advanced noise reduction techniques and features a specific Anti-ghost Block to minimize ghosting effects. Specifications:  Maximum Resolution o Image : 13MP o Video : 13MP@30fps  -Input formats : YUV422–8 bits  -Output formats o DVP : YUV422-8 bits o AXI : YUV420, YUV422  -8 bits-Interface o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Direct connection to sensor stream data (DVP) Features:  Base Noise Correction: AWGN reduction for improved image quality  Mask Filter: Convolution-based noise reduction for still images  Temporal Noise Data Accumulation: Gaussian Distribution-based noise reduction for video streams using 2 frames of images  3D Noise Reduction (3DNR): Sequential image noise reduction with Anti-ghost Block  Motion Estimation and Adaptive: Suppresses ghosting artifacts during noise reduction  Real-Time Processing: Supports Digital Video Port (DVP) and AXI interfaces for seamless integration  Anti-Ghost  Real time De-noising output
Overview: Lens distortion is a common issue in cameras, especially with wide-angle or fisheye lenses, causing straight lines to appear curved. Radial distortion, where the image is expanded or reduced radially from the center, is the most prominent type. Failure to correct distortion can lead to issues in digital image analysis. The solution involves mathematically modeling and correcting distortion by estimating parameters that determine the degree of distortion and applying inverse transformations. Automotive systems often require additional image processing features, such as de-warping, for front/rear view cameras. The Lens Distortion Correction H/W IP comprises 3 blocks for coordinate generation, data caching, and interpolation, providing de-warping capabilities for accurate image correction. Specifications:  Maximum Resolution: o Image: 8MP (3840x2160) o Video: 8MP @ 60fps  Input Formats: YUV422 - 8 bits  Output Formats: o AXI: YUV420, YUV422, RGB888 - 8 bits  Interface: o ARM® AMBA APB BUS interface for system control o ARM® AMBA AXI interface for data Features:  Programmable Window Size and Position  Barrel Distortion Correction Support  Wide Angle Correction up to 192°  De-warping Modes: o Zoom o Tilt o Pan o Rotate o Side-view  Programmable Parameters: o Zoom Factor: controls Distance from the Image Plane to the Camera (Sensor)
The AI Camera Module from Altek is a versatile, high-performance component designed to meet the increasing demand for smart vision solutions. This module features a rich integration of imaging lens design and combines both hardware and software capacities to create a seamless operational experience. Its design is reinforced by Altek's deep collaboration with leading global brands, ensuring a top-tier product capable of handling diverse market requirements. Equipped to cater to AI and IoT interplays, the module delivers outstanding capabilities that align with the expectations for high-resolution imaging, making it suitable for edge computing applications. The AI Camera Module ensures that end-user diversity is meaningfully addressed, offering customization in device functionality which supports advanced processing requirements such as 2K and 4K video quality. This module showcases Altek's prowess in providing comprehensive, all-in-one camera solutions which leverage sophisticated imaging and rapid processing to handle challenging conditions and demands. The AI Camera's technical blueprint supports complex AI algorithms, enhancing not just image quality but also the device's interactive capacity through facial recognition and image tracking technology.
Overview: The Camera ISP IP is an Image Signal Processing (ISP) IP developed for low-light environments in surveillance and automotive applications, supporting a maximum processing resolution of 13 Mega or 8Mega Pixels (MP) at 60 frames per second (FPS). It offers a configurable ISP pipeline with features such as 18x18 2D/8x6 2D Color Shading Correction, 19-Point Bayer Gamma Correction, Region Color Saturation, Hue, and Delta L Control functions. The ISP IP enhances image quality with optimal low-light Noise/Sharp filters and offers benefits such as low gate size and memory usage through algorithm optimization. The IP is also ARM® AMBA 3 AXI protocol compliant for easy control via an AMBA 3 APB bus interface. Specifications:  Maximum Resolution: o Image: 13MP/8MP o Video: 13MP @ 60fps / 8MP @ 60fps  Input Formats: Bayer-8, 10, 12, 14 bits  Output Formats: o DVP: YUV422, YUV444, RGB888 - 8, 10, 12 bits o AXI: YUV422, YUV444, YUV420, RGB888 - 8, 10, 12 bits  Interface: o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Direct connection to sensor stream data (DVP) o Features:  Defective Pixel Correction: On-The-Fly Defective Pixel Correction  14-Bit Bayer Channel Gain Support: Up to x4 / x7.99 with Linear Algebra for Input Pixel Level Adjustment  Gb/Gr Unbalance Correction: Maximum Correction Tolerance Gb/Gr Rate of 12.5%  2D Lens-Shading Correction: Supports 18x18 / 8x6 with Normal R/Gb/Gr/B Channel Shading Correction and Color Stain Correction  High-Resolution RGB Interpolation: Utilizes ES/Hue-Med/Average/Non-Directional Based Hybrid Type Algorithm  Color Correction Matrix: 3x3 Matrix  Bayer Gamma Correction: 19 points  RGB Gamma Correction: 19 points  Color Enhancement: Hue/Sat/∆-L Control for R/G/B/C/M/Y Channels  High-Performance Noise Reduction: For Bayer/RGB/YC Domain Noise Reduction  High-Resolution Sharpness Control: Multi-Sharp Filter with Individual Sharp Gain Control  Auto Exposure: Utilizes 16x16 Luminance Weight Window & Pixel Weighting  Auto White Balance: Based on R/G/B Feed-Forward Method  Auto Focus: 2-Type 6-Region AF Value Return
Quadric's Chimera GPNPU is an adaptable processor core designed to respond efficiently to the demand for AI-driven computations across multiple application domains. Offering up to 864 TOPS, this licensable core seamlessly integrates into system-on-chip designs needing robust inference performance. By maintaining compatibility with all forms of AI models, including cutting-edge large language models and vision transformers, it ensures long-term viability and adaptability to emerging AI methodologies. Unlike conventional architectures, the Chimera GPNPU excels by permitting complete workload management within a singular execution environment, which is vital in avoiding the cumbersome and resource-intensive partitioning of tasks seen in heterogeneous processor setups. By facilitating a unified execution of matrix, vector, and control code, the Chimera platform elevates software development ease, and substantially improves code maintainability and debugging processes. In addition to high adaptability, the Chimera GPNPU capitalizes on Quadric's proprietary Compiler infrastructure, which allows developers to transition rapidly from model conception to execution. It transforms AI workflows by optimizing memory utilization and minimizing power expenditure through smart data storage strategies. As AI models grow increasingly complex, the Chimera GPNPU stands out for its foresight and capability to unify AI and DSP tasks under one adaptable and programmable platform.
Overview: RCCC and RCCB in ISP refer to Red and Blue Color Correction Coefficients, respectively. These coefficients are utilized in Image Signal Processing to enhance red and blue color components for accurate color reproduction and balance. They are essential for color correction and calibration to ensure optimal image quality and color accuracy in photography, video recording, and visual displays. The IP is designed to process RCCC pattern data from sensors, where green and blue pixels are substituted by Clear pixel, resulting in Red or Clear (Monochrome) format after demosaicing. It supports real-time processing with Digital Video Port (DVP) format similar to CIS output. RCCB sensors use Clear pixels instead of Green pixels, enhancing sensitivity and image quality in low-light conditions compared to traditional RGB Bayer sensors. LOTUS converts input from RCCB sensors to a pattern resembling RGB Bayer sensors, providing DVP format interface for real-time processing. Features:  Maximum Resolution: 8MP (3840h x 2160v)  Maximum Input Frame Rate: 30fps  Low Power Consumption  RCCC/RCCB Pattern demosaicing
xcore.ai by XMOS is a groundbreaking solution designed to bring intelligent functionality to the forefront of semiconductor applications. It enables powerful real-time execution of AI, DSP, and control functionalities, all on a single, programmable chip. The flexibility of its architecture allows developers to integrate various computational tasks efficiently, making it a fitting choice for projects ranging from smart audio devices to automated industrial systems. With xcore.ai, XMOS provides the technology foundation necessary for swift deployment and scalable application across different sectors, delivering high performance in demanding environments.
Overview: Human eyes have a wider dynamic range than CMOS image sensors (CIS), leading to differences in how objects are perceived in images or videos. To address this, CIS and IP algorithms have been developed to express a higher range of brightness. High Dynamic Range (HDR) based on Single Exposure has limitations in recreating the Saturation Region, prompting the development of Wide Dynamic Range (WDR) using Multi Exposure images. The IP supports PWL companding mode or Linear mode to perform WDR. It analyzes the full-image histogram for global tone mapping and maximizes visible contrast in local areas for enhanced dynamic range. Specifications:  Maximum Resolution: o Image: 13MP o Video: 13MP @ 60fps (Input/Output)  Input Formats (Bayer): o HDR Linear Mode: Max raw 28 bits o Companding Mode: Max PWL compressed raw 24 bits  Output Formats (Bayer): 14 bits  Interface: o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Video data stream interface Features:  Global Tone Mapping based on histogram analysis o Adaptive global tone mapping per Input Images  Local Tone Mapping for adaptive contrast enhancement  Real-Time WDR Output  Low Power Consumption and Small Gate Count  28-bit Sensor Data Interface
The Metis AIPU M.2 Accelerator Module from Axelera AI provides an exceptional balance of performance and size, perfectly suited for edge AI applications. Designed for high-performance tasks, this module is powered by a single Metis AI Processing Unit (AIPU), which offers cutting-edge inference capabilities. With this M.2 card module, developers can easily integrate AI processing power into compact devices.<br><br>This module accommodates demanding AI workloads, enabling applications to perform complex computations with efficiency. Thanks to its low power consumption and versatile integration capabilities, it opens new possibilities for use in edge devices that require robust AI processing power. The Metis AIPU M.2 module supports a wide range of AI models and pipelines, facilitated by Axelera's Voyager SDK software platform which ensures seamless deployment and optimization of AI models.<br><br>The module's versatile design allows for streamlined concurrent multi-model processing, significantly boosting the device's AI capabilities without the need for external data centers. Additionally, it supports advanced quantization techniques, providing users with increased prediction accuracy for high-stakes applications.
The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.
The AX45MP is engineered as a high-performance processor that supports multicore architecture and advanced data processing capabilities, particularly suitable for applications requiring extensive computational efficiency. Powered by the AndesCore processor line, it capitalizes on a multicore symmetric multiprocessing framework, integrating up to eight cores with robust L2 cache management. The AX45MP incorporates advanced features such as vector processing capabilities and support for MemBoost technology to maximize data throughput. It caters to high-demand applications including machine learning, digital signal processing, and complex algorithmic computations, ensuring data coherence and efficient power usage.
The ARINC 818 Product Suite is a comprehensive solution designed for professionals working with advanced avionics systems. It provides a robust framework for implementing, testing, and simulating ARINC 818 systems. The product suite includes a variety of tools and resources tailored for the lifecycle of ARINC 818 systems, ensuring that clients can develop mission-critical systems with confidence. With a primary focus on performance and scalability, the ARINC 818 Product Suite is developed to cater to complex requirements and to seamlessly integrate within existing technology stacks. Users benefit from its extensive compatibility and the ability to manage high-speed data effectively, making it a vital asset for those working in aviation and defense sectors.
The KL520 marks Kneron's foray into the edge AI landscape, offering an impressive combination of size, power efficiency, and performance. Armed with dual ARM Cortex M4 processors, this chip can operate independently or as a co-processor to enable AI functionalities such as smart locks and security monitoring. The KL520 is adept at 3D sensor integration, making it an excellent choice for applications in smart home ecosystems. Its compact design allows devices powered by it to operate on minimal power, such as running on AA batteries for extended periods, showcasing its exceptional power management capabilities.
The KL530 represents a significant advancement in AI chip technology with a new NPU architecture optimized for both INT4 precision and transformer networks. This SOC is engineered to provide high processing efficiency and low power consumption, making it suitable for AIoT applications and other innovative scenarios. It features an ARM Cortex M4 CPU designed for low-power operation and offers a robust computational power of up to 1 TOPS. The chip's ISP enhances image quality, while its codec ensures efficient multimedia compression. Notably, the chip's cold start time is under 500 ms with an average power draw of less than 500 mW, establishing it as a leader in energy efficiency.
Altek's 3D Imaging Chip is a breakthrough in the field of vision technology. Designed with an emphasis on depth perception, it enhances the accuracy of 3D scene capturing, making it ideal for applications requiring precise distance gauging such as autonomous vehicles and drones. The chip integrates seamlessly within complex systems, boasting superior recognition accuracy that ensures reliable and robust performance. Building upon years of expertise in 3D imaging, this chip supports multiple 3D modes, offering flexible solutions for devices from surveillance robots to delivery mechanisms. It facilitates medium-to-long-range detection needs thanks to its refined depth sensing capabilities. Altek's approach ensures a comprehensive package from modular design to chip production, creating a cohesive system that marries both hardware and software effectively. Deployed within various market segments, it delivers adaptable image solutions with dynamic design agility. Its imaging prowess is further enhanced by state-of-the-art algorithms that refine image quality and facilitate facial detection and recognition, thereby expanding its utility across diverse domains.
The PDM-to-PCM Converter from Archband Labs leads in transforming pulse density modulation signals into pulse code modulation signals. This converter is essential in applications where high fidelity of audio signal processing is vital, including digital audio systems and communication devices. Archband’s solution ensures accurate conversion, preserving the integrity and clarity of the original audio. This converter is crafted to seamlessly integrate with a wide array of systems, offering flexibility and ease-of-use in various configurations. Its robust design supports a wide range of input frequencies, making it adaptable to different signal environments. The PDM-to-PCM Converter also excels in minimizing latency and reducing overhead processing times. It’s engineered for environments where precision and sound quality are paramount, ensuring that audio signals remain crisp and undistorted during conversion processes.
The GH310 offers high-performance 2D sprite graphics capabilities with an emphasis on pixel throughput and minimal gate count. This makes it an excellent choice for applications that require rapid sprite rendering and high pixel density, such as user interfaces and gaming devices. Its optimized architecture supports efficient sprite operations, making it a versatile choice for embedded systems.
aiSim 5 is at the forefront of automotive simulation, providing a comprehensive environment for the validation and verification of ADAS and AD systems. This innovative simulator integrates AI and physics-based digital twin technology, creating an adaptable and realistic testing ground that accommodates diverse and challenging environmental scenarios. It leverages advanced sensor simulation capabilities to reproduce high fidelity data critical for testing and development. The simulator's architecture is designed for modularity, allowing seamless integration with existing systems through C++ and Python APIs. This facilitates a wide range of testing scenarios while ensuring compliance with ISO 26262 ASIL-D standards, which is a critical requirement for automotive industry trust. aiSim 5 offers developers significant improvements in testing efficiency, allowing for runtime performance adjustments with deterministic outcomes. Some key features of aiSim 5 include the ability to simulate varied weather conditions with real-time adaptable environments, a substantial library of 3D assets, and built-in domain randomization features through aiFab for synthetic data generation. Additionally, its innovative rendering engine, aiSim AIR, enhances simulation realism while optimizing computational resources. This tool serves as an ideal solution for companies looking to push the boundaries of ADAS and AD testing and deployment.
The EZiD211, also known as Oxford-2, is a leading-edge demodulator and modulator developed by EASii IC to facilitate advanced satellite communications. It embodies a sophisticated DVB-S2X wideband tuner capable of supporting LEO, MEO, and GEO satellites, integrating proprietary features like Beam Hopping, VLSNR, and Super Frame applications. With EZiD211 at the helm, satellite communications undergo a transformation in efficiency and capacity, addressing both current and future demands for fixed data infrastructures, mobility, IoT, and M2M applications. Its technological forefront facilitates seamless operations in varied European space programs, validated by its full production readiness. EZiD211's design offers a unique capability to manage complex satellite links, enhance performance, and ensure robust and reliable data transmission. EASii IC provides comprehensive support through evaluation boards and samples, allowing smooth integration and testing to meet evolving satellite communication standards.
The KL720 AI SoC is designed for optimal performance-to-power ratios, achieving 0.9 TOPS per watt. This makes it one of the most efficient chips available for edge AI applications. The SOC is crafted to meet high processing demands, suitable for high-end devices including smart TVs, AI glasses, and advanced cameras. With an ARM Cortex M4 CPU, it enables superior 4K imaging, full HD video processing, and advanced 3D sensing capabilities. The KL720 also supports natural language processing (NLP), making it ideal for emerging AI interfaces such as AI assistants and gaming gesture controls.
The H.264 FPGA Encoder and CODEC Micro Footprint Cores are versatile, ITAR-compliant solutions providing high-performance video compression tailored for FPGAs. These H.264 cores leverage industry-leading technology to offer 1080p60 H.264 Baseline support in a compact design, presenting one of the fastest and smallest FPGA cores available. Customizable features allow for unique pixel depths and resolutions, with particular configurations including an encoder, CODEC, and I-Frame only encoder options, making this IP adaptable to varied video processing needs. Designed with precision, these cores introduce significant latency improvements, such as achieving 1ms latency at 1080p30. This capability not only enhances real-time video processing but also optimizes integration with existing electronic systems. Licensing options are flexible, offering a cost-effective evaluation license to accommodate different project scopes and needs. Customization possibilities further extend to unique resolution and pixel depth requirements, supporting diverse application needs in fields like surveillance, broadcasting, and multimedia solutions. The core’s design ensures it can seamlessly integrate into a variety of platforms, including challenging and sophisticated FPGA applications, all while keeping development timelines and budgets in focus.
The HOTLink II Product Suite is designed to facilitate high-speed connectivity and data transfer in demanding environments. This suite of products offers robust solutions for those needing reliable and fast data links, catering to industries where performance and precision are crucial. As part of Great River Technology's offerings, HOTLink II stands out by providing comprehensive support throughout product lifecycles and ensuring compatibility with various systems. With HOTLink II, users can expect exceptional levels of performance and reliability thanks to its advanced design, which is geared towards meeting the rigorous demands of aerospace and defense applications. Whether implementing new systems or upgrading existing infrastructures, the HOTLink II Product Suite provides the versatility and capability needed to meet diverse clients' needs. The suite is particularly beneficial for engineers requiring high-performance link solutions that integrate seamlessly within larger systems, enhancing operational effectiveness and efficiency. It includes all the necessary tools to ensure a smooth deployment process while minimizing potential downtime associated with new technology integration.
The Chipchain C100 is a pioneering solution in IoT applications, providing a highly integrated single-chip design that focuses on low power consumption without compromising performance. Its design incorporates a powerful 32-bit RISC-V CPU which can reach speeds up to 1.5GHz. This processing power ensures efficient and capable computing for diverse IoT applications. This chip stands out with its comprehensive integrated features including embedded RAM and ROM, making it efficient in both processing and computing tasks. Additionally, the C100 comes with integrated Wi-Fi and multiple interfaces for transmission, broadening its application potential significantly. Other notable features of the C100 include an ADC, LDO, and a temperature sensor, enabling it to handle a wide array of IoT tasks more seamlessly. With considerations for security and stability, the Chipchain C100 facilitates easier and faster development in IoT applications, proving itself as a versatile component in smart devices like security systems, home automation products, and wearable technology.
The RayCore MC is a revolutionary real-time path and ray-tracing GPU designed to enhance rendering with minimal power consumption. This GPU IP is tailored for real-time applications, offering a rich graphical experience without compromising on speed or efficiency. By utilizing advanced ray-tracing capabilities, RayCore MC provides stunning visual effects and lifelike animations, setting a high standard for quality in digital graphics. Engineered for scalability and performance, RayCore MC stands out in the crowded field of GPU technologies by delivering seamless, low-latency graphics. It is particularly suited for applications in gaming, virtual reality, and the burgeoning metaverse, where realistic rendering is paramount. The architecture supports efficient data management, ensuring that even the most complex visual tasks are handled with ease. RayCore MC's architecture supports a wide array of applications beyond entertainment, making it a vital tool in areas such as autonomous vehicles and data-driven industries. Its blend of power efficiency and graphical prowess ensures that developers can rely on RayCore MC for cutting-edge, resource-light graphic solutions.
Ncore Cache Coherent Interconnect is designed to tackle the multifaceted challenges in multicore SoC systems by introducing heterogeneous coherence and efficient cache management. This NoC IP optimizes performance by ensuring high throughput and reliable data transmission across multiple cores, making it indispensable for sophisticated computing tasks. Leveraging advanced cache coherency, Ncore maintains data integrity, crucial for maintaining system stability and efficiency in operations involving heavy computational loads. With its ISO26262 support, it caters to automotive and industrial applications requiring high reliability and safety standards. This interconnect technology pairs well with diverse processor architectures and supports an array of protocols, providing seamless integration into existing systems. It enables a coherent and connected multicore environment, enhancing the performance of high-stakes applications across various industry verticals, from automotive to advanced computing environments.
The GV380 is a 2D vector graphics GPU optimized for low CPU load and enhanced pixel processing. It conforms to the OpenVG 1.1 standard, making it ideal for applications requiring high-quality vector graphics rendering. This IP enables efficient graphic processing for embedded systems, ensuring that even resource-limited environments can enjoy sophisticated graphical interfaces.
GSHARK is part of the TAKUMI line of GPU IPs known for its compact size and ability to richly enhance display graphics in embedded systems. Developed for devices like digital cameras, this IP has demonstrated an extensive record of reliability with over a hundred million units shipped. The proprietary architecture offers exceptional performance with low power usage and minimal CPU demand, enabling high-quality graphics rendering typical of PCs and smartphones.
HFFx Auto is a high-frequency restoration technology designed to address audio quality degradation resulting from the use of lossy codecs. This technology is incredibly versatile, functioning effectively with both streamed audio-visual content and digital broadcast services. Its adaptability enables seamless adjustment across varying channel bandwidths and is capable of enhancing audio originally constrained by low sampling rates or sources like analogue tapes. Beyond restoration, HFFx Auto aids in up-conversion to higher sampling rates, offering a more open and natural sound experience. This capability makes it an indispensable tool for digital TV and other audio applications where enhancing the clarity and quality of sound is crucial. By automatically restoring bandwidth and compensating for frequency loss, HFFx Auto ensures that audio outputs remain vibrant and true to the original source material.
Syntacore’s SCR9 processor core stands out as a powerful force in handling high-performance computing tasks with its dual-issue out-of-order 12-stage pipeline. This core is engineered for environments that demand peak computational ability and robust pipeline execution, crucial for data-intense tasks such as AI and ML, enterprise applications, and network processing. The architecture is tailored to support extensive multicore and heterogeneous configurations, providing valuable tools for developers aiming to maximize workload efficiency and processing speed. The inclusion of a vector processing unit (VPU) underscores its capability to handle large datasets and complex calculations, while maintaining system integrity and coherence through its comprehensive cache management. With support for hypervisor functionalities and scalable Linux environments, the SCR9 continues to be a key strategic element in expanding the horizons of RISC-V-based applications. Syntacore’s extensive library of development resources further enriches the usability of this core, ensuring that its implementation remains smooth and effective across diverse technological landscapes.
The 2D FFT core is designed to efficiently handle two-dimensional FFT processing, ideal for applications in image and video processing where data is inherently two-dimensional. This core is engineered to integrate both internal and external memory configurations, which optimize data handling for complex multimedia processing tasks, ensuring a high level of performance is maintained throughout. Utilizing sophisticated algorithms, the 2D FFT core processes data through two FFT engines. This dual approach maximizes throughput, typically limiting bottlenecks to memory bandwidth constraints rather than computational delays. This efficiency is critical for applications handling large volumes of multimedia data where real-time processing is a requisite. The capacity of the 2D FFT core to adapt to varying processing environments marks its versatility in the digital processing landscape. By ensuring robust data processing capabilities, it addresses the challenges of dynamic data movement, providing the reliability necessary for multimedia systems. Its strategic design supports the execution of intensive computational tasks while maintaining the operational flow integral to real-time applications.
The DisplayPort 1.4 IP-core offered by Parretto B.V. is a compact yet potent solution for DisplayPort connectivity needs. Supporting a range of link rates from 1.62 to 8.1 Gbps, this IP-core accommodates varied setups with ease, including embedded DisplayPort (eDP) applications. It provides support for multiple lane configurations and both native video and AXI stream interfaces. The inclusion of Single and Multi Stream transport modes enhances its versatility for different video applications. Tailored for modern FPGA devices, the core supports a comprehensive video format range, including RGB and various YCbCr colorspaces. A standout feature is the secondary data packet interface, enabling audio and metadata transport alongside video signals. This makes it a full-fledged solution for video-centric applications, complemented by a Video Toolbox geared for video processing tasks like timing and test pattern generation. Parretto ensures the IP-core's adaptability by offering it with a thin host driver and API for seamless integration. The core is compatible with an extensive list of FPGA devices, such as AMD UltraScale+ and Intel Arria 10 GX. Customers benefit from the availability of source code via GitHub, promoting easier customization and deep integration into diverse systems. Comprehensive documentation supports the IP-core, ensuring efficient setup and utilization.
The DSC Decoder by Trilinear Technologies delivers high-performance video compression capabilities for applications demanding real-time display stream processing. Encapsulated in robust silicon-proven IP, the decoder supports Display Stream Compression (DSC) standards, allowing for efficient compression and decompression of high-definition video streams. This ensures seamless video quality while optimizing the use of data transmission channels and saving bandwidth. A vital component of modern multimedia systems, the DSC Decoder is particularly valuable in industries where image quality and transmission efficiency are critical, such as in broadcasting, telecommunications, and advanced surveillance systems. By implementing industry-standard interfaces for configuration and operation, the decoder achieves smooth interoperability with a wide range of host systems and devices, simplifying its integration into existing digital infrastructures. Trilinear Technologies' DSC Decoder is optimized for low power consumption without sacrificing performance. This focus on energy efficiency makes it ideal for portable and battery-powered devices that demand prolonged operational times without frequent recharging. Its real-time decoding capability ensures that even high-definition streams up to 16K can be managed effectively, providing high-detail video output in a variety of formats and resolutions. The integration of the DSC Decoder is facilitated by detailed support documentation and software stacks that make it easier for developers to incorporate the IP into systems with varied architectural foundations. Whether deployed in consumer electronics or professional AV installations, this decoder ensures high-quality video output with reduced latency, meeting the demands of modern digital workflows and multimedia needs.
Overview: RGB-IR features in ISP enable the capture and processing of Red, Green, Blue, and Infrared (IR) light data in an Image Signal Processing (ISP) system. This functionality enhances image quality by extracting additional information not visible to the human eye in standard RGB images. By integrating IR and RGB data into the demosaic processing pipeline, the ISP can enhance scene analysis, object detection, and image clarity in applications such as surveillance, automotive, and security systems. Features:  IR Core - 4Kx1EA:  4K Maximum Resolution: 3840h x 2160v @ 30fps  IR Color Correction 3.99x support  IR data Full-size output / 1/4x subsample support (Pure IR Pixel data)  Only RGB-IR 4x4 pattern support  IR data Crop support
High-resolution Image Processing IP Performance 4K60p@400MHz (600MHz for display interface) Features Support various color format : YUV420, YUV422, YUV444, and RGB Up-/Down-scaler x1/8~x8 : selectable scaler algorithm with Bi-cubic and Lanczos Two scalers, connected to DRAM and display/direct I/F respectively, operating at different ratios at the same time (configurable to one scaler option) Color space conversion : YUV2RGB and RGB2YUV, coefficient downloadable Optional features Crop and digital zoom : scaling on cropped region Flip : horizontal and vertical 3rd Party interfaces: such as AFBC v1.2 and PVRIC v4 (support output only) Interface​ Display Interface : 3 channels for components with vertical/horizontal sync signal (ITU-R BT.601 compatible) Direct Interface (optional feature) : On-the-fly interface based on ready-valid protocol Support CF10 (Chips&Media’s Frame buffer compression) for Chips&Media video codec Support AFBC v1.2 and PVRIC v4 (optional feature) for output of MAPI
The TW330 distortion correction IP is tailored for use in applications requiring dynamic image transformations, such as VR headsets and automotive HUDs. Utilizing GPU-powered technologies, it offers real-time coordinate transformations, distortion corrections, and other modifications up to a resolution of 16K x 16K in both RGB and YUV formats. This IP is crucial for enhancing visual accuracy and display adaptability across varied markets.
The ISPido on VIP Board solution is designed for the Lattice Semiconductor's VIP (Video Interface Platform) board, offering real-time, high-quality image processing. It supports automatic configuration selection at boot, ensuring a balanced output or alternatively, it provides a menu interface for manual adjustments. Key features include input from two Sony IMX 214 sensors and output in HDMI format with 1920 x 1080p resolution using YCrCb 4:2:2 color space. This system supports run-time calibration via a serial port, allowing users to customize gamma tables, convolution filters, and other settings to match specific application needs. The innovative setup facilitates streamlined image processing for efficient deployment across applications requiring high-definition video processing.
The RISCV SoC developed by Dyumnin Semiconductors is engineered with a 64-bit quad-core server-class RISCV CPU, aiming to bridge various application needs with an integrated, holistic system design. Each subsystem of this SoC, from AI/ML capabilities to automotive and multimedia functionalities, is constructed to deliver optimal performance and streamlined operations. Designed as a reference model, this SoC enables quick adaptation and deployment, significantly reducing the time-to-market for clients. The AI Accelerator subsystem enhances AI operations with its collaboration of a custom central processing unit, intertwined with a specialized tensor flow unit. In the multimedia domain, the SoC boasts integration capabilities for HDMI, Display Port, MIPI, and other advanced graphic and audio technologies, ensuring versatile application across various multimedia requirements. Memory handling is another strength of this SoC, with support for protocols ranging from DDR and MMC to more advanced interfaces like ONFI and SD/SDIO, ensuring seamless connectivity with a wide array of memory modules. Moreover, the communication subsystem encompasses a broad spectrum of connectivity protocols, including PCIe, Ethernet, USB, and SPI, crafting an all-rounded solution for modern communication challenges. The automotive subsystem, offering CAN and CAN-FD protocols, further extends its utility into automotive connectivity.
The Mixed-Signal CODEC offered by Archband Labs integrates advanced analog and digital audio processing to deliver superior sound quality. Designed for a variety of applications such as portable audio devices, automotive systems, and entertainment systems, this CODEC provides efficiency and high performance. With cutting-edge technologies, it handles complex signal conversions with minimal power consumption. This CODEC supports numerous interface standards, making it a versatile component in numerous audio architectures. It's engineered to offer precise sound reproduction and maintains audio fidelity across all use cases. The integrated components within the CODEC streamline design processes and reduce the complexity of audio system implementations. Furthermore, the Mixed-Signal CODEC incorporates features that support high-resolution audio, ensuring compatibility with high-definition sound systems. It's an ideal choice for engineers looking for a reliable and comprehensive audio processing solution.
Silicon Library Inc.'s HDMI Receiver (Rx) is a specialized IP designed for receiving high-definition multimedia content. Conforming to HDMI 1.4 and 2.0 standards, it provides reliable reception of audio and video signals in a variety of consumer electronics. This IP ensures the integrity and quality of incoming multimedia streams, delivering crisp visuals and clear audio. The HDMI Rx IP is built with robustness to cater to the sophisticated demands of modern entertainment devices, such as smart TVs, video projectors, and home theater systems. It seamlessly integrates into these devices, enhancing their capability to handle high-resolution content with minimal latency and interference. Engineered to support dynamic range and high-dimensional color profiles, the HDMI Rx efficiently manages data transmission, ensuring a seamless viewing experience. The IP is also characterized by its low-power consumption and effective signal processing capabilities, making it an ideal component for today's power-sensitive multimedia devices.
FlexWay Interconnect is precisely engineered for cost-effective and low-power applications, particularly suited for Internet-of-Things (IoT) edge devices and microcontrollers. It ensures efficient data management across small to medium scale SoCs. Providing support for ISO26262, it bolsters safety and reliability in critical applications. This interconnect allows for flexible topology generation, enabling configurations that minimize wire lengths and optimize timing closures. Its inherently scalable design allows for incremental upgrades and enhancements, accommodating up to 50 network interface units for customizable connections across configurations. The technology underpinning FlexWay supports key industry protocols such as AXI and APB, making it adaptable to various design requirements. The inclusion of automatic, script-driven topology generation and mesh network editing capabilities means that design complexity is significantly reduced, easing the path from concept to production.
MajEQ Pro is an advanced equalizer tailored for professional audio applications, allowing both static and dynamic EQ adjustments to match specific frequency response targets. It handles tasks such as venue correction or adapting to atmospheric changes at live events. This tool encompasses features including high and low-pass filters with variable slopes, tone controls, and unique filter designs such as Bell or Presence filters with customizable gain, frequency, and Q.
The BAT Audio Platform represents a leading-edge audio IP solution developed for battery-powered System-on-Chip (SoC) applications. Intelligently designed to offer unparalleled audio fidelity, this platform significantly enhances auditory features in SoCs, accommodating uses from active noise cancellation and beamforming to voice user interfaces. With a focus on low energy consumption, BAT ensures extended battery life, optimizing devices for efficient operations. Offering an expansive array of off-the-shelf solutions combined with numerous customization options, BAT enables rapid market readiness and risk reduction by building upon top-tier, silicon-proven IPs. This platform not only accelerates project timelines but also decreases development costs, freeing clients to focus on their core competencies while leveraging Dolphin's audio expertise. Incorporating features like WhisperTrigger for ultra-low-power voice activity detection and WhisperExtractor for energy-saving analog feature extraction, BAT represents a holistic approach to advancing audio technology. The platform’s digital and mixed-signal solutions provide seamless integration and configuration, ensuring high fidelity and low power consumption across a spectrum of applications from consumer electronics to IoT devices.
The Universal DSP Library is designed to simplify digital signal processing tasks. It ensures efficient and highly effective operations by offering a comprehensive suite of algorithms and functions tailored for various DSP applications. The library is engineered for optimal performance and can be easily integrated into FPGA-based designs, making it a versatile tool for any digital signal processing needs. The comprehensive nature of the Universal DSP Library simplifies the development of complex signal processing applications. It includes support for key processing techniques and can significantly reduce the time required to implement and test DSP functionalities. By leveraging this library, developers can achieve high efficiency and performance in their digital signal processing tasks, thereby optimizing overall system resources. Moreover, the DSP library is designed to be compatible with a wide range of FPGAs, providing a flexible and scalable solution. This makes it an ideal choice for developers seeking to create innovative solutions across various applications, ensuring that their designs can handle demanding signal processing requirements effectively.
Building upon advanced CMOS processes, this image sensor technology is tailored to meet the demands of high-resolution image capture with exceptional clarity and speed. It showcases the integration of sophisticated pixel architectures alongside cutting-edge analog-to-digital conversion techniques. These elements work in tandem to ensure outstanding image quality, making the technology ideal for applications like digital cameras, smartphones, and security cameras. The technology's core strength lies in its ability to deliver high dynamic range and low-light sensitivity, expanding its usability across different lighting conditions. It supports a wide array of pixel sizes and formats, allowing for customization based on specific application needs. Alongside these features, the technology provides efficient noise reduction and energy management, contributing to prolonged battery life and enhanced sensor performance. Moreover, the CMOS Image Sensor Technology benefits from sustained innovation and development, ensuring it remains at the forefront of imaging advancements. It is equipped with various supportive resources such as reference designs and application notes, which help integrate the sensors seamlessly into new products. This positions Tower Semiconductor's technology as a vital enabler for modern imaging devices where precision and detail are critical.
aiData is an automated data pipeline tailored for Advanced Driver-Assistance Systems (ADAS) and Autonomous Driving (AD). This system is crucial for processing and transforming extensive real-world driving data into meticulously annotated, training-ready datasets. Its primary focus is on efficiency and precision, significantly reducing the manual labor traditionally associated with data annotation. aiData dramatically speeds up the data preparation process, providing real-time feedback and minimizing data wastage. By employing the aiData Auto Annotator, the system offers superhuman precision in automatically identifying and labeling dynamic entities such as vehicles and pedestrians, achieving significant cost reductions. The implementation of AI-driven data curation and versioning ensures that only the most relevant data is used for model improvement, providing full traceability and customization throughout the data's lifecycle. The pipeline further includes robust metrics for automatically verifying new software outputs, ensuring that performance stays at an optimal level. With aiData, companies are empowered to streamline their ADAS and AD data workflows, ensuring rapid and reliable output from concept to application.
ZIA Image Signal Processing technology provides state-of-the-art solutions for optimizing image quality and enhancing vision-based systems. This technology is integral to applications requiring precise image analysis, such as surveillance cameras and automotive safety systems. It supports various image processing tasks, including de-noising, color correction, and sharpness enhancement, delivering superior visual output even under challenging conditions. ZIA's adaptable architecture supports integration into a range of devices, ensuring broad applicability across multiple sectors.
The Hyperspectral Imaging System by Imec offers enhanced imaging capabilities, chiefly used in space exploration and Earth observation for on-chip spectral imaging. This technology allows for efficient data capture across numerous spectral bands, giving a comprehensive view that is critical for scientific and commercial applications. With its compact and robust design, the system delivers high-resolution imaging while maintaining the portability needed for field applications. This advanced imaging system leverages on-chip technology that combines innovative hardware and software solutions, contributing to its high efficiency and accuracy in capturing detailed spectral information. The hyperspectral imaging achieved allows for assembling vast datasets rapidly, which is valuable in various applications ranging from environmental monitoring to agricultural assessments. Incorporating lead-free quantum dot photodiodes, the system ensures environmentally friendly operation and precise spectral capture. The modular design of the system facilitates easy integration into existing platforms, expanding its usability across different sectors requiring advanced imaging capabilities.
The Camera ISP Core is designed to optimize image signal processing by integrating sophisticated algorithms that produce sharp, high-resolution images while requiring minimal logic. Compatible with RGB Bayer and monochrome image sensors, this core handles inputs from 8 to 14 bits and supports resolutions from 256x256 up to 8192x8192 pixels. Its multi-pixel processing capabilities per clock cycle allow it to achieve performance metrics like 4Kp60 and 4Kp120 on FPGA devices. It uses AXI4-Lite and AXI4-Stream interfaces to streamline defect correction, lens shading correction, and high-quality demosaicing processes. Advanced noise reduction features, both 2D and 3D, are incorporated to handle different lighting conditions effectively. The core also includes sophisticated color and gamma corrections, with HDR processing for combining multiple exposure images to improve dynamic range. Capabilities such as auto focus and saturation, contrast, and brightness control are further enhanced by automatic white balance and exposure adjustments based on RGB histograms and window analyses. Beyond its core features, the Camera ISP Core is available with several configurations including the HDR, Pro, and AI variations, supporting different performance requirements and FPGA platforms. The versatility of the core makes it suitable for a range of applications where high-quality real-time image processing is essential.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!