All IPs > Multimedia
In the rapidly evolving world of semiconductors, multimedia semiconductor IPs play a crucial role in enabling and enhancing digital media experiences across various electronic devices. This category encompasses a broad range of intellectual properties tailored for multimedia processing, from audio and video codecs to graphical interfaces, essential for consumer electronics, mobile devices, broadcasting equipment, and more. As technology advances, so too do the demands for higher performance, better quality, and increased efficiency in multimedia signal processing.
This category is home to subcategories that feature cutting-edge technologies and industry standards in multimedia processing. 2D and 3D rendering IPs lead the visual innovation charge, offering essential tools for developing immersive user interfaces and gaming experiences. Advanced audio interfaces, including ADPCM and WMA IPs, provide high-quality sound reproduction and compression, essential for both professional audio systems and consumer devices.
One of the highlights of the multimedia IP category is video compression technology. Standards like H.264, H.265, and the new H.266 are crucial for streaming services, broadcasting, and digital video recorders, offering solutions that reduce data rates while maintaining video quality. Image processing IPs including JPEG, JPEG 2000, and MPEG standards, ensure efficient image storage and retrieval, vital for digital cameras and web applications.
Additionally, interface IPs such as HDMI, Camera Interface, and MHL provide seamless connectivity, enabling efficient data transfer between devices. With innovations such as AV1 for open-source video coding, and emerging technologies like TICO and MPEG 5 LCEVC, our catalog covers both established and avant-garde solutions for multimedia applications. These semiconductor IPs empower developers and manufacturers to deliver next-generation multimedia experiences, ensuring devices meet the modern consumer's expectations for quality and performance.
The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.
Designed for high-performance applications, the Metis AIPU PCIe AI Accelerator Card by Axelera AI offers powerful AI processing capabilities in a PCIe card format. This card is equipped with the Metis AI Processing Unit, capable of delivering up to 214 TOPS, making it ideal for intensive AI tasks and vision applications that require substantial computational power. With support for the Voyager SDK, this card ensures seamless integration and rapid deployment of AI models, helping developers leverage existing infrastructures efficiently. It's tailored for applications that demand robust AI processing like high-resolution video analysis and real-time object detection, handling complex networks with ease. Highlighted for its performance in ResNet-50 processing, which it can execute at a rate of up to 3,200 frames per second, the PCIe AI Accelerator Card perfectly meets the needs of cutting-edge AI applications. The software stack enhances the developer experience, simplifying the scaling of AI workloads while maintaining cost-effectiveness and energy efficiency for enterprise-grade solutions.
Overview: CMOS Image Sensors (CIS) often suffer from base noise, such as Additive White Gaussian Noise (AWGN), which deteriorates image quality in low-light environments. Traditional noise reduction methods include mask filters for still images and temporal noise data accumulation for video streams. However, these methods can lead to ghosting artifacts in sequential images due to inconsistent signal processing. To address this, this IP offers advanced noise reduction techniques and features a specific Anti-ghost Block to minimize ghosting effects. Specifications:  Maximum Resolution o Image : 13MP o Video : 13MP@30fps  -Input formats : YUV422–8 bits  -Output formats o DVP : YUV422-8 bits o AXI : YUV420, YUV422  -8 bits-Interface o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Direct connection to sensor stream data (DVP) Features:  Base Noise Correction: AWGN reduction for improved image quality  Mask Filter: Convolution-based noise reduction for still images  Temporal Noise Data Accumulation: Gaussian Distribution-based noise reduction for video streams using 2 frames of images  3D Noise Reduction (3DNR): Sequential image noise reduction with Anti-ghost Block  Motion Estimation and Adaptive: Suppresses ghosting artifacts during noise reduction  Real-Time Processing: Supports Digital Video Port (DVP) and AXI interfaces for seamless integration  Anti-Ghost  Real time De-noising output
Overview: Lens distortion is a common issue in cameras, especially with wide-angle or fisheye lenses, causing straight lines to appear curved. Radial distortion, where the image is expanded or reduced radially from the center, is the most prominent type. Failure to correct distortion can lead to issues in digital image analysis. The solution involves mathematically modeling and correcting distortion by estimating parameters that determine the degree of distortion and applying inverse transformations. Automotive systems often require additional image processing features, such as de-warping, for front/rear view cameras. The Lens Distortion Correction H/W IP comprises 3 blocks for coordinate generation, data caching, and interpolation, providing de-warping capabilities for accurate image correction. Specifications:  Maximum Resolution: o Image: 8MP (3840x2160) o Video: 8MP @ 60fps  Input Formats: YUV422 - 8 bits  Output Formats: o AXI: YUV420, YUV422, RGB888 - 8 bits  Interface: o ARM® AMBA APB BUS interface for system control o ARM® AMBA AXI interface for data Features:  Programmable Window Size and Position  Barrel Distortion Correction Support  Wide Angle Correction up to 192°  De-warping Modes: o Zoom o Tilt o Pan o Rotate o Side-view  Programmable Parameters: o Zoom Factor: controls Distance from the Image Plane to the Camera (Sensor)
Overview: The Camera ISP IP is an Image Signal Processing (ISP) IP developed for low-light environments in surveillance and automotive applications, supporting a maximum processing resolution of 13 Mega or 8Mega Pixels (MP) at 60 frames per second (FPS). It offers a configurable ISP pipeline with features such as 18x18 2D/8x6 2D Color Shading Correction, 19-Point Bayer Gamma Correction, Region Color Saturation, Hue, and Delta L Control functions. The ISP IP enhances image quality with optimal low-light Noise/Sharp filters and offers benefits such as low gate size and memory usage through algorithm optimization. The IP is also ARM® AMBA 3 AXI protocol compliant for easy control via an AMBA 3 APB bus interface. Specifications:  Maximum Resolution: o Image: 13MP/8MP o Video: 13MP @ 60fps / 8MP @ 60fps  Input Formats: Bayer-8, 10, 12, 14 bits  Output Formats: o DVP: YUV422, YUV444, RGB888 - 8, 10, 12 bits o AXI: YUV422, YUV444, YUV420, RGB888 - 8, 10, 12 bits  Interface: o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Direct connection to sensor stream data (DVP) o Features:  Defective Pixel Correction: On-The-Fly Defective Pixel Correction  14-Bit Bayer Channel Gain Support: Up to x4 / x7.99 with Linear Algebra for Input Pixel Level Adjustment  Gb/Gr Unbalance Correction: Maximum Correction Tolerance Gb/Gr Rate of 12.5%  2D Lens-Shading Correction: Supports 18x18 / 8x6 with Normal R/Gb/Gr/B Channel Shading Correction and Color Stain Correction  High-Resolution RGB Interpolation: Utilizes ES/Hue-Med/Average/Non-Directional Based Hybrid Type Algorithm  Color Correction Matrix: 3x3 Matrix  Bayer Gamma Correction: 19 points  RGB Gamma Correction: 19 points  Color Enhancement: Hue/Sat/∆-L Control for R/G/B/C/M/Y Channels  High-Performance Noise Reduction: For Bayer/RGB/YC Domain Noise Reduction  High-Resolution Sharpness Control: Multi-Sharp Filter with Individual Sharp Gain Control  Auto Exposure: Utilizes 16x16 Luminance Weight Window & Pixel Weighting  Auto White Balance: Based on R/G/B Feed-Forward Method  Auto Focus: 2-Type 6-Region AF Value Return
Altek's AI Camera Module integrates sophisticated imaging technology with artificial intelligence, providing a powerful solution for high-definition visual capture and AI-based image processing. This module is tailored for applications where high precision and advanced analytic capabilities are required, such as in security systems and automotive technology. The module is equipped with a broad range of functionalities, including facial recognition, motion detection, and edge computing. It harnesses AI to process images in real-time, delivering insights and analytics that support decision-making processes in various environments. By combining AI with its imaging sensors, Altek enables next-generation visual applications that require minimal human intervention. Altek's AI Camera Module stands out for its high-degree of integration with IoT networks, allowing for seamless connectivity across devices. Its adaptability to different environments and conditions makes it a highly versatile tool. The module's design ensures durability and reliability, maintaining performance even under challenging conditions, thereby ensuring consistent and accurate image capture and processing.
The Chimera GPNPU from Quadric is engineered to meet the diverse needs of modern AI applications, bridging the gap between traditional processing and advanced AI model requirements. It's a fully licensable processor, designed to deliver high AI inference performance while eliminating the complexity of traditional multi-core systems. The GPNPU boasts an exceptional ability to execute various AI models, including classical backbones, state-of-the-art transformers, and large language models, all within a single execution pipeline.\n\nOne of the core strengths of the Chimera GPNPU is its unified architecture that integrates matrix, vector, and scalar processing capabilities. This singular design approach allows developers to manage complex tasks such as AI inference and data-parallel processing without resorting to multiple tools or artificial partitioning between processors. Users can expect heightened productivity thanks to its modeless operation, which is fully programmable and efficiently executes C++ code alongside AI graph code.\n\nIn terms of versatility and application potential, the Chimera GPNPU is adaptable across different market segments. It's available in various configurations to suit specific performance needs, from single-core designs to multi-core clusters capable of delivering up to 864 TOPS. This scalability, combined with future-proof programmability, ensures that the Chimera GPNPU not only addresses current AI challenges but also accommodates the ever-evolving landscape of cognitive computing requirements.
xcore.ai is a versatile and powerful processing platform designed for AIoT applications, delivering a balance of high performance and low power consumption. Crafted to bring AI processing capabilities to the edge, it integrates embedded AI, DSP, and advanced I/O functionalities, enabling quick and effective solutions for a variety of use cases. What sets xcore.ai apart is its cycle-accurate programmability and low-latency control, which improve the responsiveness and precision of the applications in which it is deployed. Tailored for smart environments, xcore.ai ensures robust and flexible computing power, suitable for consumer, industrial, and automotive markets. xcore.ai supports a wide range of functionalities, including voice and audio processing, making it ideal for developing smart interfaces such as voice-controlled devices. It also provides a framework for implementing complex algorithms and third-party applications, positioning it as a scalable solution for the growing demands of the connected world.
Overview: RCCC and RCCB in ISP refer to Red and Blue Color Correction Coefficients, respectively. These coefficients are utilized in Image Signal Processing to enhance red and blue color components for accurate color reproduction and balance. They are essential for color correction and calibration to ensure optimal image quality and color accuracy in photography, video recording, and visual displays. The IP is designed to process RCCC pattern data from sensors, where green and blue pixels are substituted by Clear pixel, resulting in Red or Clear (Monochrome) format after demosaicing. It supports real-time processing with Digital Video Port (DVP) format similar to CIS output. RCCB sensors use Clear pixels instead of Green pixels, enhancing sensitivity and image quality in low-light conditions compared to traditional RGB Bayer sensors. LOTUS converts input from RCCB sensors to a pattern resembling RGB Bayer sensors, providing DVP format interface for real-time processing. Features:  Maximum Resolution: 8MP (3840h x 2160v)  Maximum Input Frame Rate: 30fps  Low Power Consumption  RCCC/RCCB Pattern demosaicing
Overview: Human eyes have a wider dynamic range than CMOS image sensors (CIS), leading to differences in how objects are perceived in images or videos. To address this, CIS and IP algorithms have been developed to express a higher range of brightness. High Dynamic Range (HDR) based on Single Exposure has limitations in recreating the Saturation Region, prompting the development of Wide Dynamic Range (WDR) using Multi Exposure images. The IP supports PWL companding mode or Linear mode to perform WDR. It analyzes the full-image histogram for global tone mapping and maximizes visible contrast in local areas for enhanced dynamic range. Specifications:  Maximum Resolution: o Image: 13MP o Video: 13MP @ 60fps (Input/Output)  Input Formats (Bayer): o HDR Linear Mode: Max raw 28 bits o Companding Mode: Max PWL compressed raw 24 bits  Output Formats (Bayer): 14 bits  Interface: o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Video data stream interface Features:  Global Tone Mapping based on histogram analysis o Adaptive global tone mapping per Input Images  Local Tone Mapping for adaptive contrast enhancement  Real-Time WDR Output  Low Power Consumption and Small Gate Count  28-bit Sensor Data Interface
The Metis AIPU M.2 Accelerator Module from Axelera AI is a cutting-edge solution designed for enhancing AI performance directly within edge devices. Engineered to fit the M.2 form factor, this module packs powerful AI processing capabilities into a compact and efficient design, suitable for space-constrained applications. It leverages the Metis AI Processing Unit to deliver high-speed inference directly at the edge, minimizing latency and maximizing data throughput. The module is optimized for a range of computer vision tasks, making it ideal for applications like multi-channel video analytics, quality inspection, and real-time people monitoring. With its advanced architecture, the AIPU module supports a wide array of neural networks and can handle up to 24 concurrent video streams, making it incredibly versatile for industries looking to implement AI-driven solutions across various sectors. Providing seamless compatibility with AI frameworks such as TensorFlow, PyTorch, and ONNX, the Metis AIPU integrates seamlessly with existing systems to streamline AI model deployment and optimization. This not only boosts productivity but also significantly reduces time-to-market for edge AI solutions. Axelera's comprehensive software support ensures that users can achieve maximum performance from their AI models while maintaining operational efficiency.
The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.
The Jotunn8 AI Accelerator represents a pioneering approach in AI inference chip technology, designed to cater to the demanding needs of contemporary data centers. Its architecture is optimized for high-speed deployment of AI models, combining rapid data processing capabilities with cost-effectiveness and energy efficiency. By integrating features such as ultra-low latency and substantial throughput capacity, it supports real-time applications like chatbots and fraud detection that require immediate data processing and agile responses. The chip's impressive performance per watt metric ensures a lower operational cost, making it a viable option for scalable AI operations that demand both efficiency and sustainability. By reducing power consumption, Jotunn8 not only minimizes expenditure but also contributes to a reduced carbon footprint, aligning with the global move towards greener technology solutions. These attributes make Jotunn8 highly suitable for applications where energy considerations and environmental impact are paramount. Additionally, Jotunn8 offers flexibility in memory performance, allowing for the integration of complexity in AI models without compromising on speed or efficiency. The design emphasizes robustness in handling large-scale AI services, catering to the new challenges posed by expanding data needs and varied application environments. Jotunn8 is not simply about enhancing inference speed; it proposes a new baseline for scalable AI operations, making it a foundational element for future-proof AI infrastructure.
The ARINC 818 Product Suite is a comprehensive collection of tools and resources designed to support the full development lifecycle for ARINC 818 enabled equipment. This suite assists in the implementation and testing of ARINC 818 protocols, which are crucial for systems that require high-performance video and data transmission, such as in avionics and defense applications. The product suite is built to facilitate not only the development and qualification but also the simulation of ARINC 818 products, ensuring effective integration into mission-critical environments. The suite’s tools include development software and Implementer's guides, enabling seamless access to ARINC 818 capabilities.
The AX45MP is engineered as a high-performance processor that supports multicore architecture and advanced data processing capabilities, particularly suitable for applications requiring extensive computational efficiency. Powered by the AndesCore processor line, it capitalizes on a multicore symmetric multiprocessing framework, integrating up to eight cores with robust L2 cache management. The AX45MP incorporates advanced features such as vector processing capabilities and support for MemBoost technology to maximize data throughput. It caters to high-demand applications including machine learning, digital signal processing, and complex algorithmic computations, ensuring data coherence and efficient power usage.
The GH310 offers high-performance 2D sprite graphics capabilities with an emphasis on pixel throughput and minimal gate count. This makes it an excellent choice for applications that require rapid sprite rendering and high pixel density, such as user interfaces and gaming devices. Its optimized architecture supports efficient sprite operations, making it a versatile choice for embedded systems.
The KL520 marks Kneron's foray into the edge AI landscape, offering an impressive combination of size, power efficiency, and performance. Armed with dual ARM Cortex M4 processors, this chip can operate independently or as a co-processor to enable AI functionalities such as smart locks and security monitoring. The KL520 is adept at 3D sensor integration, making it an excellent choice for applications in smart home ecosystems. Its compact design allows devices powered by it to operate on minimal power, such as running on AA batteries for extended periods, showcasing its exceptional power management capabilities.
The PDM-to-PCM Converter from Archband Labs leads in transforming pulse density modulation signals into pulse code modulation signals. This converter is essential in applications where high fidelity of audio signal processing is vital, including digital audio systems and communication devices. Archband’s solution ensures accurate conversion, preserving the integrity and clarity of the original audio. This converter is crafted to seamlessly integrate with a wide array of systems, offering flexibility and ease-of-use in various configurations. Its robust design supports a wide range of input frequencies, making it adaptable to different signal environments. The PDM-to-PCM Converter also excels in minimizing latency and reducing overhead processing times. It’s engineered for environments where precision and sound quality are paramount, ensuring that audio signals remain crisp and undistorted during conversion processes.
The KL530 represents a significant advancement in AI chip technology with a new NPU architecture optimized for both INT4 precision and transformer networks. This SOC is engineered to provide high processing efficiency and low power consumption, making it suitable for AIoT applications and other innovative scenarios. It features an ARM Cortex M4 CPU designed for low-power operation and offers a robust computational power of up to 1 TOPS. The chip's ISP enhances image quality, while its codec ensures efficient multimedia compression. Notably, the chip's cold start time is under 500 ms with an average power draw of less than 500 mW, establishing it as a leader in energy efficiency.
The HOTLink II Product Suite constitutes a range of resources specifically tailored for systems utilizing HOTLink IIâ„¢ technology. This suite is engineered to manage high-speed video and data communication in environments where reliability and precision are paramount. It is ideal for applications in aerospace where maintaining high data integrity is critical. The suite provides robust solutions for both the development and operational stages, enhancing system performance. With its extensive support for different phases of product lifecycle management, the HOTLink II suite ensures that products meet the high standards required for mission-critical military and industrial applications.
The H.264 FPGA Encoder and CODEC Micro Footprint Cores from A2e Technologies is a highly customizable IP core designed specifically for FPGAs. This core is notable for its small size and high speed, capable of supporting 1080p60 H.264 Baseline video with a single core. Featuring exceptionally low latency, as little as 1ms at 1080p30, it offers a customizable solution for various video resolutions and pixel depths. These capabilities make it a competitive choice for applications requiring high-performance video compression with minimal footprint. Designed to be ITAR compliant and licensable, the H.264 core can be tailored to meet specific requirements, offering flexibility in video applications. This product is especially suitable for industries where space and performance are critical, such as defense and industrial controls. The core can work efficiently across a range of resolutions and color depths, providing the potential for integration into a wide array of devices and systems. The company's expertise ensures that this H.264 core is not only versatile but also comes with the option of a low-cost evaluation license, allowing potential users to explore its capabilities before committing fully. With A2e's strong support and integration services, customers have assurance that even complex design requirements can be met with experienced guidance.
Overview: RGB-IR features in ISP enable the capture and processing of Red, Green, Blue, and Infrared (IR) light data in an Image Signal Processing (ISP) system. This functionality enhances image quality by extracting additional information not visible to the human eye in standard RGB images. By integrating IR and RGB data into the demosaic processing pipeline, the ISP can enhance scene analysis, object detection, and image clarity in applications such as surveillance, automotive, and security systems. Features:  IR Core - 4Kx1EA:  4K Maximum Resolution: 3840h x 2160v @ 30fps  IR Color Correction 3.99x support  IR data Full-size output / 1/4x subsample support (Pure IR Pixel data)  Only RGB-IR 4x4 pattern support  IR data Crop support
The GV380 is a 2D vector graphics GPU optimized for low CPU load and enhanced pixel processing. It conforms to the OpenVG 1.1 standard, making it ideal for applications requiring high-quality vector graphics rendering. This IP enables efficient graphic processing for embedded systems, ensuring that even resource-limited environments can enjoy sophisticated graphical interfaces.
The KL720 AI SoC is designed for optimal performance-to-power ratios, achieving 0.9 TOPS per watt. This makes it one of the most efficient chips available for edge AI applications. The SOC is crafted to meet high processing demands, suitable for high-end devices including smart TVs, AI glasses, and advanced cameras. With an ARM Cortex M4 CPU, it enables superior 4K imaging, full HD video processing, and advanced 3D sensing capabilities. The KL720 also supports natural language processing (NLP), making it ideal for emerging AI interfaces such as AI assistants and gaming gesture controls.
The Chipchain C100 is a pioneering solution in IoT applications, providing a highly integrated single-chip design that focuses on low power consumption without compromising performance. Its design incorporates a powerful 32-bit RISC-V CPU which can reach speeds up to 1.5GHz. This processing power ensures efficient and capable computing for diverse IoT applications. This chip stands out with its comprehensive integrated features including embedded RAM and ROM, making it efficient in both processing and computing tasks. Additionally, the C100 comes with integrated Wi-Fi and multiple interfaces for transmission, broadening its application potential significantly. Other notable features of the C100 include an ADC, LDO, and a temperature sensor, enabling it to handle a wide array of IoT tasks more seamlessly. With considerations for security and stability, the Chipchain C100 facilitates easier and faster development in IoT applications, proving itself as a versatile component in smart devices like security systems, home automation products, and wearable technology.
GSHARK is part of the TAKUMI line of GPU IPs known for its compact size and ability to richly enhance display graphics in embedded systems. Developed for devices like digital cameras, this IP has demonstrated an extensive record of reliability with over a hundred million units shipped. The proprietary architecture offers exceptional performance with low power usage and minimal CPU demand, enabling high-quality graphics rendering typical of PCs and smartphones.
Engineered for superior performance, Silicon Library's HDMI Rx module guarantees high-quality reception of HDMI signals. Designed to handle both HDMI 1.4 and 2.0 standards, this module is capable of processing the highest quality video and audio signals, making it essential for high-definition displays and multimedia devices. The HDMI Rx solution is optimized for minimal signal degradation, ensuring that the output is as clear and responsive as the input, even in environments with high interference. This IP can support resolutions up to 4K, offering an unparalleled visual experience for end-users. Beyond its technical capabilities, Silicon Library’s HDMI Rx is built to integrate smoothly into various systems, from consumer electronics to automotive applications. Its efficient architecture not only ensures fidelity in audio and video output but also promotes energy-efficient operation.
The TW330 distortion correction IP is tailored for use in applications requiring dynamic image transformations, such as VR headsets and automotive HUDs. Utilizing GPU-powered technologies, it offers real-time coordinate transformations, distortion corrections, and other modifications up to a resolution of 16K x 16K in both RGB and YUV formats. This IP is crucial for enhancing visual accuracy and display adaptability across varied markets.
ISELED represents a breakthrough in automotive lighting with its integration of RGB LED control and communication in a single, smart LED component. This innovative system simplifies lighting design by enabling digital color value input for immediate autonomous color mixing and temperature adjustments, reducing both complexity and cost in vehicles. ISELED operates by implementing a manufacturer-calibrated RGB LED setup suitable for diverse applications, from ambient to functional lighting systems within vehicles. Utilizing a bidirectional communication protocol, ISELED manages up to 4,079 addressable LEDs, offering easy installation and high precision control over individual light characteristics, ideal for creating dynamic and at times synchronized lighting across the automotive interior. This technology ultimately enhances network resilience with features like DC/DC conversion from a standard 12V battery, consistent communication despite power variations, and compatibility with software-free Ethernet bridge systems for streamlined connectivity. This strong focus on reducing production and operational costs, while simultaneously broadening lighting functionality, positions ISELED as a modern solution for smart automotive lighting architectures.
aiSim 5 represents a pivotal advancement in the simulation of automated driving systems, facilitating realistic and efficient validation of ADAS and autonomous driving components. Designed to exceed conventional expectations, aiSim 5 combines high-fidelity sensor and environment simulation with an AI-based digital twin concept to deliver unparalleled simulation accuracy and realism. It is the first simulator to be certified at ISO 26262 ASIL-D level, offering users the utmost industry trust.\n\nThe simulated environments are rooted in physics-based sensor data and cover a wide spectrum of operational design domains, including urban areas and highways. This ensures the simulation tests AD systems under diverse and challenging conditions, such as adverse weather events. aiSim 5's modular architecture supports easy integration with existing systems, leveraging open APIs to ensure seamless incorporation into various testing and continuous integration pipelines.\n\nNotably, aiSim 5 incorporates aiFab's domain randomization to create extensive synthetic data, mirroring real-world variances. This feature assists in identifying edge cases, allowing developers to test system responsiveness in rare but critical scenarios. By turning the spotlight on multi-sensor simulation and synthetic data generation, aiSim 5 acts as a powerful tool to accelerate the development lifecycle of ADAS and AD technologies, fostering innovation and development efficiency.\n\nThrough its intuitive graphical interface, aiSim 5 democratizes access to high-performance simulations, supporting operating systems like Microsoft Windows and Linux Ubuntu. This flexibility, coupled with the tool’s compatibility with numerous standards such as OpenSCENARIO and FMI, makes aiSim an essential component for automotive simulation projects striving for precision and agility.
The EZiD211, also known as Oxford-2, is a leading-edge demodulator and modulator developed by EASii IC to facilitate advanced satellite communications. It embodies a sophisticated DVB-S2X wideband tuner capable of supporting LEO, MEO, and GEO satellites, integrating proprietary features like Beam Hopping, VLSNR, and Super Frame applications. With EZiD211 at the helm, satellite communications undergo a transformation in efficiency and capacity, addressing both current and future demands for fixed data infrastructures, mobility, IoT, and M2M applications. Its technological forefront facilitates seamless operations in varied European space programs, validated by its full production readiness. EZiD211's design offers a unique capability to manage complex satellite links, enhance performance, and ensure robust and reliable data transmission. EASii IC provides comprehensive support through evaluation boards and samples, allowing smooth integration and testing to meet evolving satellite communication standards.
The Mixed-Signal CODEC offered by Archband Labs integrates advanced analog and digital audio processing to deliver superior sound quality. Designed for a variety of applications such as portable audio devices, automotive systems, and entertainment systems, this CODEC provides efficiency and high performance. With cutting-edge technologies, it handles complex signal conversions with minimal power consumption. This CODEC supports numerous interface standards, making it a versatile component in numerous audio architectures. It's engineered to offer precise sound reproduction and maintains audio fidelity across all use cases. The integrated components within the CODEC streamline design processes and reduce the complexity of audio system implementations. Furthermore, the Mixed-Signal CODEC incorporates features that support high-resolution audio, ensuring compatibility with high-definition sound systems. It's an ideal choice for engineers looking for a reliable and comprehensive audio processing solution.
The RayCore MC is a revolutionary real-time path and ray-tracing GPU designed to enhance rendering with minimal power consumption. This GPU IP is tailored for real-time applications, offering a rich graphical experience without compromising on speed or efficiency. By utilizing advanced ray-tracing capabilities, RayCore MC provides stunning visual effects and lifelike animations, setting a high standard for quality in digital graphics. Engineered for scalability and performance, RayCore MC stands out in the crowded field of GPU technologies by delivering seamless, low-latency graphics. It is particularly suited for applications in gaming, virtual reality, and the burgeoning metaverse, where realistic rendering is paramount. The architecture supports efficient data management, ensuring that even the most complex visual tasks are handled with ease. RayCore MC's architecture supports a wide array of applications beyond entertainment, making it a vital tool in areas such as autonomous vehicles and data-driven industries. Its blend of power efficiency and graphical prowess ensures that developers can rely on RayCore MC for cutting-edge, resource-light graphic solutions.
The DSC Decoder by Trilinear Technologies delivers high-performance video compression capabilities for applications demanding real-time display stream processing. Encapsulated in robust silicon-proven IP, the decoder supports Display Stream Compression (DSC) standards, allowing for efficient compression and decompression of high-definition video streams. This ensures seamless video quality while optimizing the use of data transmission channels and saving bandwidth. A vital component of modern multimedia systems, the DSC Decoder is particularly valuable in industries where image quality and transmission efficiency are critical, such as in broadcasting, telecommunications, and advanced surveillance systems. By implementing industry-standard interfaces for configuration and operation, the decoder achieves smooth interoperability with a wide range of host systems and devices, simplifying its integration into existing digital infrastructures. Trilinear Technologies' DSC Decoder is optimized for low power consumption without sacrificing performance. This focus on energy efficiency makes it ideal for portable and battery-powered devices that demand prolonged operational times without frequent recharging. Its real-time decoding capability ensures that even high-definition streams up to 16K can be managed effectively, providing high-detail video output in a variety of formats and resolutions. The integration of the DSC Decoder is facilitated by detailed support documentation and software stacks that make it easier for developers to incorporate the IP into systems with varied architectural foundations. Whether deployed in consumer electronics or professional AV installations, this decoder ensures high-quality video output with reduced latency, meeting the demands of modern digital workflows and multimedia needs.
The DisplayPort 1.4 core by Parretto offers a comprehensive solution for implementing DisplayPort functionalities in electronic designs. This IP supports both source (DPTX) and sink (DPRX) configurations, making it a versatile choice for any DisplayPort application. It operates at link rates of 1.62, 2.7, 5.4, and 8.1 Gbps, including embedded DisplayPort rates, and supports 1, 2, and 4 DP lanes. The IP core is built with adaptability in mind, featuring native video and AXI stream video interfaces. It supports both Single Stream Transport (SST) and Multi Stream Transport (MST) modes, accommodating diverse video streaming needs. With dual and quad pixels per clock transmission, it can deliver up to 10-bit video in various colorspaces such as RGB, YCbCr 4:4:4, YCbCr 4:2:2, and YCbCr 4:2:0. Additionally, the DisplayPort 1.4 IP core includes a secondary data packet interface for audio and metadata transport, enhancing multimedia performance. It comes with an accessible Video Toolbox that includes a timing generator, test pattern generator, and video clock recovery feature. Parretto provides full source code access, ensuring customizable integration and increased product reliability.
The DisplayPort/eDP by Silicon Library is designed to provide high-performance interfaces capable of delivering exceptional video clarity and fidelity. Supporting DisplayPort 1.4 standards, this module is ideal for high-resolution displays, ensuring sharp and fluid visual output. This IP ensures seamless data transfer for video signals with high bandwidth efficiency, making it extremely suitable for advanced multimedia applications. It supports a range of resolutions, including Ultra HD, and facilitates excellent color depth and dynamic range in visual displays. Silicon Library's DisplayPort/eDP module offers exceptional flexibility in integration across a plethora of consumer electronic devices, enhancing their visual performance. With features optimized for energy efficiency and reduced latency, this product is perfect for modern applications that demand the pinnacle of video output technology.
The Ncore Cache Coherent Interconnect from Arteris is engineered to overcome challenges associated with multicore SoC designs. It delivers high-bandwidth, low-latency interconnect fabric enhancing communication efficiency across various SoC components and multiple dies. Designed to ensure reliable performance and scalability, this coherent NoC addresses complex tasks by implementing heterogeneous coherency, and it is scalable from small embedded systems to extensive multi-die designs. Ncore promotes effective cache management, providing full coherency for processors and I/O coherency for accelerators. It supports various coherency protocols including CHI-E and ACE, and comes with ISO 26262 certification, meeting stringent safety standards in automotive environments. The inherent AMBA support allows seamless integration with existing and new SoC infrastructures, enhancing data handling efficiency. By offering automated generation of diagnostic analysis and fault modes, Ncore aids developers in creating secure systems ready for advanced automotive and AI applications, thereby accelerating their time-to-market. Its configurability and extensive protocol support position it as a trusted choice for industries requiring flexible and robust system integration solutions.
The SERDES12G module integrates serialization and deserialization functionalities within fiber optic transceivers operating at data rates between 8.5 and 11.3Gb/s. Utilizing CML logic for enhanced noise immunity, it features line rate output data retiming, making it indispensable in high-speed networking applications where precise data modulation is crucial.
The HEVC/H.265 Encoder from Allegro DVT is designed to offer superior video encoding solutions, particularly for high-efficiency applications where quality and compression data rates are crucial. Focused on supporting high-resolution video streams, this encoder is compatible with a wide array of video formats, handling complex coding with ease and ensuring reduced bandwidth usage without sacrificing quality. This encoder is strategically developed to cater to the high demands of modern multimedia applications. Whether employed in video surveillance, broadcasting, or cloud-based transcoding services, it excels in providing high-quality output, emphasizing both performance and efficiency. Capable of working with up to 8K resolutions, the encoder facilitates a new era of video content production where detail and clarity are paramount. Built with an energy-efficient design, the HEVC/H.265 Encoder maintains productivity without extensive power requirements, making it suitable for a variety of settings where power conservation is a priority. Its modular nature also provides scalability, allowing for upgrades and enhancements as technology and consumer demands evolve over time.
The Hyperspectral Imaging System developed by Imec is a revolutionary tool for capturing and analyzing light across a wide range of wavelengths. This system is particularly valuable for applications requiring detailed spectral analysis, such as agricultural inspection, environmental monitoring, and medical diagnostics. By capturing hundreds of narrow spectral bands, the system provides a comprehensive spectral profile of the subject, enabling precise identification of materials and substances. What sets Imec's Hyperspectral Imaging System apart is its ability to integrate seamlessly into existing devices, allowing for versatile use across various industries. The compact and efficient design ensures that it can be deployed in field conditions, offering real-time analysis capabilities that are crucial for immediate decision-making processes. The Hyperspectral Imaging System is designed with cutting-edge CMOS technology, ensuring high sensitivity and accuracy. This integration with CMOS technology not only enhances the performance but also ensures that the system is cost-effective and accessible to a broader range of applications and markets. As hyperspectral imaging continues to evolve, Imec's system stands as a leader in the field, providing unmatched resolution and reliability.
ISPido represents a fully configurable RTL Image Signal Processing Pipeline, adhering to the AMBA AXI4 standards and tailored through the AXI4-LITE protocol for seamless integration with systems such as RISC-V. This advanced pipeline supports a variety of image processing functions like defective pixel correction, color filter interpolation using the Malvar-Cutler algorithm, and auto-white balance, among others. Designed to handle resolutions up to 7680x7680, ISPido provides compatibility for both 4K and 8K video systems, with support for 8, 10, or 12-bit depth inputs. Each module within this pipeline can be fine-tuned to fit specific requirements, making it a versatile choice for adapting to various imaging needs. The architecture's compatibility with flexible standards ensures robust performance and adaptability in diverse applications, from consumer electronics to professional-grade imaging solutions. Through its compact design, ISPido optimizes area and energy efficiency, providing high-quality image processing while keeping hardware demands low. This makes it suitable for battery-operated devices where power efficiency is crucial, without sacrificing the processing power needed for high-resolution outputs.
aiData serves as a comprehensive automated data pipeline tailored specifically for the development of ADAS and autonomous driving technologies. This solution optimizes various stages of MLOps, from data capturing to curation, significantly reducing the traditional manual workload required for assembling high-quality datasets. By leveraging cutting-edge technologies for data collection and annotation, aiData enhances the reliability and speed of deploying AD models, fostering a more efficient flow of data between developers and data scientists.\n\nOne of the standout features of aiData is its versioning system that ensures transparency and traceability throughout the data lifecycle. This system aids in curating datasets tailored for specific use cases via metadata enrichment and SQL querying, supporting seamless data management whether on-premise or cloud. Additionally, the aiData Recorder is engineered to produce high-quality datasets by enabling precise sensor calibration and synchronization, crucial for advanced driving applications.\n\nMoreover, the Auto Annotator component of aiData automates the traditionally labor-intensive process of data annotation, utilizing AI algorithms to produce annotations that meet high accuracy standards. This capability, combined with the aiData Metrics tool, allows for comprehensive validation of datasets, ensuring that they correctly reflect real-world conditions. Collectively, aiData empowers automotive developers to refine neural network algorithms and enhance detection software, accelerating the journey from MLOps to production.
Packetcraft's Bluetooth LE Audio Solutions offer a full suite of host, controller, and LC3 components optimized for seamless transition to Bluetooth LE Audio. The platform supports Auracast broadcast audio and True Wireless Stereo (TWS), making it adaptable to prevalent chipsets and providing flexibility to product companies. The modular design facilitates simplified integration, ensuring companies can leverage advanced audio capabilities in a variety of applications. As Bluetooth audio technology evolves, Packetcraft remains at the leading edge, offering industry-leading solutions that cater to modern audio requirements.
MajEQ Pro is an advanced equalizer tailored for professional audio applications, allowing both static and dynamic EQ adjustments to match specific frequency response targets. It handles tasks such as venue correction or adapting to atmospheric changes at live events. This tool encompasses features including high and low-pass filters with variable slopes, tone controls, and unique filter designs such as Bell or Presence filters with customizable gain, frequency, and Q.
The pPLL08 Family is a state-of-the-art lineup of all-digital RF frequency synthesizer PLLs engineered for high-frequency applications including 5G and WiFi. These PLLs are designed to deliver ultra-low jitter performance, achieving less than 300 femtoseconds RMS, while supporting frequencies up to 8GHz. Their exceptionally compact area of less than 0.05 square millimeters and low power consumption of under 15 milliwatts make them suitable for demanding RF environments. Built using Perceptia's second-generation digital PLL technology, the pPLL08 Family excels in maintaining consistent output regardless of PVT conditions, offering robust performance in RF applications as a local oscillator or clocking solution for high-performance ADCs and DACs. Its digital architecture minimizes interference from shared die circuits, ensuring superior signal-to-noise ratio performance. The PLLs in this family are available across numerous process technologies, including leading foundries like UMC and TSMC, ensuring flexibility and broad applicability. Perceptia also provides extensive integration support and adaptability for customization, tailoring solutions to meet specific hardware requirements and optimizing integration into various system architectures.
Dyumnin's RISCV SoC is a versatile platform centered around a 64-bit quad-core server-class RISCV CPU, offering extensive subsystems, including AI/ML, automotive, multimedia, memory, cryptographic, and communication systems. This test chip can be reviewed in an FPGA format, ensuring adaptability and extensive testing possibilities. The AI/ML subsystem is particularly noteworthy due to its custom CPU configuration paired with a tensor flow unit, accelerating AI operations significantly. This adaptability lends itself to innovations in artificial intelligence, setting it apart in the competitive landscape of processors. Additionally, the automotive subsystem caters robustly to the needs of the automotive sector with CAN, CAN-FD, and SafeSPI IPs, all designed to enhance systems connectivity within vehicles. Moreover, the multimedia subsystem boasts a complete range of IPs to support HDMI, Display Port, MIPI, and more, facilitating rich audio and visual experiences across devices.
FlexWay Interconnect caters to the demands of cost-effective, low-power applications, particularly within the Internet of Things (IoT) edge devices and microcontrollers. It is designed as an entry-level network-on-chip IP, emphasizing simplicity without compromising on the dynamic communication needs essential for embedded System-on-Chip projects. This system supports a wide range of configurations and efficiently manages dataflow within small to medium-scale SoCs. Through its intuitive user interface and support for various protocols including AMBA, FlexWay simplifies design processes while maintaining efficient on-chip communication. The IP is equipped with advanced power management features, ensuring great performance with low energy constraints, making it well-suited for battery-operated devices. FlexWay maintains system integrity through robust verification and debugging support, which minimizes errors and accelerates time to market. By combining flexibility in topologies and robust supporting tools, it allows developers to tailor solutions to specific application needs efficiently.
The DSC Encoder from Trilinear Technologies sets the standard for real-time video compression within digital display and broadcast technologies. Supporting VESA’s Display Stream Compression criteria, this encoder facilitates the efficient compression of high-definition video streams, which is critical for reducing bandwidth usage while maintaining video quality across transmission channels in advanced video systems. Trilinear’s encoder is ideal for numerous applications, ranging from consumer electronics to professional AV systems, where ensuring high-quality video output is paramount. Its robust functionality enables it to handle streams with precision and maintain visual integrity, making it essential for systems that require high-efficiency video compression such as gaming consoles, digital TV, and mobile devices. The DSC Encoder offers a high degree of configurability, providing developers with the flexibility to adapt it to various system requirements. It is equipped with industry-standard interfaces, allowing straightforward integration into existing infrastructure, ensuring compatibility and operational efficiency across different platforms. This versatility makes it well-suited for use in SoC designs and FPGA implementations, broadening its applicability across various technological landscapes. Featuring comprehensive software support and detailed user documentation, Trilinear’s DSC Encoder simplifies the integration process into complex systems, ensuring that developers can tap into its full range of capabilities with ease. Its real-time processing power and optimized energy consumption profile make it a reliable choice for cutting-edge digital video applications, reflecting Trilinear’s commitment to advancing multimedia technology.
HFFx Auto is a high-frequency restoration technology designed to address audio quality degradation resulting from the use of lossy codecs. This technology is incredibly versatile, functioning effectively with both streamed audio-visual content and digital broadcast services. Its adaptability enables seamless adjustment across varying channel bandwidths and is capable of enhancing audio originally constrained by low sampling rates or sources like analogue tapes. Beyond restoration, HFFx Auto aids in up-conversion to higher sampling rates, offering a more open and natural sound experience. This capability makes it an indispensable tool for digital TV and other audio applications where enhancing the clarity and quality of sound is crucial. By automatically restoring bandwidth and compensating for frequency loss, HFFx Auto ensures that audio outputs remain vibrant and true to the original source material.
This IP block is essential for efficient data/clock recovery and deserializing in XFI and SONET/SDH protocols, supporting data rates from 8.5 to 11.3Gb/s. With ultra-low power consumption and 65nm CMOS technology from IBM, DSER12G ensures robust operation with versatile design options, incorporating a financial N divider, equalizer, and loss of signal (LOS) and lock (LOL) indicators for enhanced deployability.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!